Физико химические методы анализа в аналитической химии. Аналитическая химия. Разделение и концентрирование

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1.2 Основные приемы и методы анализа неизвестного образца

Заключение

Список использованных источников информации

Введение

Аналитическая химия имеет огромное практическое значение в жизни современного общества, поскольку создает средства для химического анализа и обеспечивает его осуществление.

Химический анализ является важным средством контроля производства и оценки качества продукции в целом ряде отраслей промышленного производства, таких как черная и цветная металлургия, машиностроение, производство чистых и сверхчистых материалов для радиоэлектронной промышленности, горнодобывающая промышленность, химическая нефтеперерабатывающая, нефтехимическая, фармацевтическая и пищевая промышленности, геологическая служба и т.д.Без химического анализа невозможно решение проблем охраны окружающей среды, функционирование агропромышленного комплекса, проведение медицинской диагностики, развитие биотехнологии.

Научной основой химического анализа является аналитическая химия, которая разрабатывает теоретические основы методов анализа или заимствует их у смежных областей химической и физической науки и приспосабливает к своим целям. Аналитическая химия определяет границы применимости методов, оценивает их метрологические характеристики, разрабатывает способы анализа различных объектов. Итак, аналитическая химия - это область научного знания, раздел химической науки, а аналитическая служба - это система обеспечения потребностей общества в химических анализах.

Целью курсовой работы по дисциплине «Аналитическая химия и физико-химические методы анализа» является освоение основных принципов качественного и количественного анализа.

Поставленная цель достигается решением конкретного задания по анализу неизвестного вещества, проведением расчета по титриметрическому методу анализа и построением соответствующей кривой титрования.

1. Качественный анализ неизвестного вещества

1.1 Теоретические сведения по качественному анализу

Качественный анализ - раздел аналитической химии, посвященный установлению качественного состава веществ, то есть обнаружению элементов и образуемых ими ионов, входящих в состав и простых, и сложных веществ. Делают это с помощью химических реакций, характерных для данного катиона или аниона, позволяющих обнаружить их как в индивидуальных веществах, так и в смесях.

Химические реакции, пригодные для качественного анализа, должны сопровождаться заметным внешним эффектом. Это может быть: выделение газа, изменение окраски раствора, выпадение осадка, растворение осадка, образование кристаллов характерной формы.

В первых четырех случаях за протеканием реакции наблюдают визуально, кристаллы рассматривают под микроскопом.

Для получения правильных результатов необходимы реакции, выполнению которых не мешают другие присутствующие ионы. Для этого нужны специфические (взаимодействующие только с определяемым ионом) или хотя бы селективные (избирательные) реагенты.

К сожалению, селективных, тем более специфических реагентов очень мало, поэтому при анализе сложной смеси приходится прибегать к маскированию мешающих ионов, переводя их в реакционно-инертную форму, или, чаще, к разделению смеси катионов или анионов на составные части, называемые аналитическими группами. Делают это с помощью специальных (групповых) реагентов, которые с рядом ионов, реагируя в одних и тех же условиях, образуют соединения с близкими свойствами - малорастворимые осадки или устойчивые растворимые комплексы. Это и позволяет разделить сложную смесь на более простые составные части. Качественный анализ состоит из следующих этапов:

Предварительные наблюдения;

Предварительные испытания;

Действие кислот на сухой образец;

Переведение анализируемой пробы в раствор;

Систематический (или дробный) качественный анализ катионов и

При проведении аналитических реакций необходимо придерживаться определенных условий. К ним относятся концентрация реагирующих веществ, реакция среды, температура .

1.2 Основные приемы и методы анализа неизвестного образца. Подготовка вещества к анализу

Приступая к исследованию химического состава данного вещества, необходимо сначала внимательно его рассмотреть, опреде-ляя его внешний вид, цвет, запах, степень измельчения (порошок, круп-нозернистая или мелкозернистая смесь, сплошная масса и т. д.), наличие кристаллических или аморфных фаз и подготовить соответствующим образом к анализу и лишь после этого приступить к установлению его химического состава.

Подготовка исследуемого вещества к анализу представляет собой очень, важную часть всего исследования.

По окраске анализируемого образца можно высказать пред-положения о наличии или отсутствии в нем тех или иных катионов. Если, например, анализируемый объект представляет собой бесцветную про-зрачную или белую массу, то это указывает на отсутствие в нем значи-тельных количеств окрашенных катионов -- хрома(III) Сr 3+ (сине-фиолетовый цвет), марганца(II) Мn 2+ (светло-розовый), железа(III) Fe 3+ (желто-бурый), кобальта(II) Со 2+ (розовый), никеля(II) Ni 2+ (зеленый), меди(II) Сu 2+ (голубой). Если образец окрашен, то можно предположить содержание в нем одного или нескольких из вышеуказанных катионов. Для полного анализа исследуемого вещества необходимо взять небольшое его количество, измеряемое миллиграммами. Качественный анализ выполняют в две стадии. Сначала проводят предварительные испытания, a, затем переходят к систематическому анализу катионов и анионов.

Предварительные испытания

Предварительные испытания позволяют установить присутствие некоторых элементов, обнаружение которых затруднено при систематическом ходе анализа.

Окрашивание пламени

Для испытания на окрашивание пламени берут проволоку длиной 60 мм, диаметром 2-3 мм. Один коней ее сгибают в петлю, другой конец впаивают в стеклянную палочку, которая служит ручкой. Проволока должна быть хорошо очищена многократным прокаливанием в наиболее горячей несветящегося пламени горелки. Проволоку опускают в соляную кислоту и прокаливают в пламени горелки, затем охлаждают до комнатной температуры. На подготовленную таким образом проволоку помещают несколько кристаллов анализируемого вещества и вносят в пламя горелки. Различные ионы окрашивают пламя в следующие цвета:

Карминово-красный………………………Sr 2+ ,Li 2+

Кирпично-красный……………………….Са 2+

Желтый…………………………………….Na +

Желто-зеленый……………………………Ba 2+

Сине-зеленый…………………………......Те

Светло-голубой……………………………As,Sb,Pb 2+

Ярко-голубой………………………………Cu 2+ ,Se

Фиолетовый ……………………………….К + ,Rb + или Сs +

Смачивание проволоки хлороводород-ной кислотой проводят для того, чтобы получить в пламени летучие хло-риды катионов, присутствующих в пробе (если она содержит нелетучий или труднолетучий компонент).

По характеру продуктов термолиза (прокаливания) пробы твердого анализируемого вещества иногда можно судить о присутствии в анализируемом веществе не-которых катионов и анионов.

Для проведения этого теста небольшую порцию анализируемого ве-щества помещают на дно тугоплавкой пробирки (длиной ~7 см) и нагревают пробу, закрепив пробирку в горизонтальном положении, в пламени газовой горелки. При термическом разложении пробы выделяются газообразные продукты термолиза, часть которых конденсируется на холодном конце пробирки.

По окраске возгона можно сделать некоторые предварительные выводы:

Цвет возгона Возможные продукты термолиза

Белый …………………………………… Соли аммония, Hg 2 Cl 2 , HgCl 2 ,

Желтый…………………………………...HgI 2 , As 2 S 3 , S

Зеркальный металлический …………….Мышьяк или ртуть (налет)

При термическом разложении наряду с возгонкой может происходить выделение паров и газов. Появление капелек воды на стенках холодной части пробирки (труб-ки) свидетельствует о том, что либо испытуемый образец содержит кристаллизационную воду, либо вода образуется в процессе термолиза пробы (с выделением воды разлагаются гидроксиды, кислые и основные соли, органические соединения).

Выделение фиолетовых паров иода и их конденсация в виде темных кристалликов указывает на возможность присутствия иодид-ионов или других йодсодержащих анионов :

Кроме фиолетовых паров иода могут выделяться бурые пары брома (возможно присутс твие бромид-ионов и других бромсодержащих анионов), желто-бурые пары оксидов азота (возможно присутствие нитратов и нитритов), а также газообразные СО (возмож-но присутствие оксалатов), СО 2 (возможно присутствие карбонатов, оксалатов), С1 2 (возможно присутствие хлорид-ионов и других хлорсодержащих анионов), SO 2 (возможно присутствие сульфитов, тио-сульфатов), SO 3 (возможно присутствие сульфатов), NH 3 (возможно присутствие солей аммония), О 2 (возможно присутствие пероксидов, нитратов, хроматов, дихроматов и т. п.).

Действие разбавле нной (~1 моль/л) серной кислоты

Разбавленная серная кислота вытесняет слабые кислоты из их солей -- карбонатов, сульфитов, тиосульфатов, сульфидов, цианидов, нитритов, ацетатов. Выделяющиеся слабые кислоты, неустойчивые в кислой среде, либо улетучиваются, либо разлагаются с образованием газообразных продуктов.

При наличии в анализируемом образце карбонатов выделяется газо-образный диоксид углерода СО 2 (бесцветный и без запаха). При наличии сульфитов и тиосульфатов выделяется диоксид серы SO 2 с запахом горя-щей серы; при наличии сульфидов -- сероводород H 2 S с запахом тухлых яиц; при наличии цианидов -- пары синильной кислоты HCN с запахом горького миндаля; при наличии нитритов -- бурые пары диоксида азота NO 2 , при наличии ацетатов -- пары уксусной кислоты СН 3 СООН с запахом уксуса.

Тест проводят следующим образом: от-бирают небольшое количество анализируемого вещества в пробирку и по каплям прибавляют к нему разбавленную серную кислоту. Выделение газов ука-зывает на присутствие в анализируемой пробе вышеуказанных анионов слабых, неустойчивых в кислой среде кислот.

Концентрированная серная кислота при взаимодействии с анализируемым веществом может выделять газообразные продукты реакций также из фторидов, хлоридов, бромидов, иодидов, тиоцианатов, оксалатов, нитратов.

При наличии в анализируемом веществе фторидов выделяются пары фтороводорода HF; при наличии хлоридов -- пары НС1 и газообразный хлор С1 2 ; при наличии бромидов -- пары НВг и желтый газообразный бром Вг 2 ; при наличии иодидов -- фиолетовые пары иода J 2 ; при наличии тиоцианатов -- газообразный диоксид серы SO 2 ; при наличии оксалатов -- бесцветные газообразные оксид СО и диоксид СО 2 углерода.

Тест проводят следующим образом. К небольшой массе твердого анализируемого вещества (0,010 г) в пробирке медленно, осторожно, по каплям прибавляют концентрирован-ную серную кислоту. Если наблюдается газовыделение, то это свидетель-ствует о присутствии в анализируемом образце вышеуказанных анионов .

Для проведения этой пробы берут смесь разбавленной Н 2 SO 4 с KJ, добавляют несколько кристалликов исследуемого вещества, предварительно измельченного до порошкообразного состояния, или 3-4 капли раствора анализируемого вещества (если вещество растворимо). При наличии окислителей выделяется свободный иод, который обнаруживается по бурой окраске раствора или с помощью крахмала. Эту реакцию дают NO 2 - ,NO 3 - , MnO 4 - , CrO 4 2- , ионы Fe 3+ , Cu 2+ .

Для обнаружения восстановителей берут смесь разбавленных растворов KMnO 4 + H 2 SO 4 .Обесцвечивание этого раствора вызывают SO 3 2- , S 2- , S 2 O 3 2- , J - , NO 2 - ,Cl - , Fe 2+ , Cr 3+ -ионы:

Растворение в воде

Небольшое количество анализируемого вещества вносят в пробирку, прибавляют несколько миллилитров дистиллированной воды и перемешивают смесь некоторое время. Если вещество при этом полностью растворилось в воде, то большую часть вещества, отобранную для анализа, растворяют в возможно мини-мальном объеме дистиллированной воды и полученный раствор анализи-руют далее. Небольшую часть исходной твердой анализируемой пробы оставляют для проведения повторных или проверочных тестов, если это окажется необходимым.

Анализ на катионы

Аналитическая группа - группа катионов, которая с каким - либо одним реактивом (при определенных условиях) может давать сходные аналитические реакции. Деление катионов на аналитические группы основано на их отношении к различным анионам. Приняты две классификации: сульфидная и кислотно-щелочная.

По кислотно-щелочной классификации катионы делятся на шесть аналитических групп (таблица 1)

Таблица 1-Разделение катионов на группы по кислотно-щелочной классификации

Групповой

Получаемые

соединения

Групповая

характеристика

K + , Na + , NH 4 +

Хлориды, сульфаты и гидроокиси растворимы в воде

Осадок AgCl, PbCl 2

Хлориды нерастворимы в воде

Осадок BaSO 4 , CaSO 4

Сульфаты нерастворимы (или плохо растворимы) в воде и кислотах

Zn 2+ ,Al 3+ , Cr 3+,

Избыток 4н КОН или NaOH

Раствор ZnO 2 2- , AlO 2 - , CrO 2 - ,

Гидроксиды растворимы в избытке едкой щелочи

Mg 2+ , Mn 2+ , Fe 2+ , Fe 3+

Избыток 25%-ного NH 3

Осадок Mg(OH) 2 , Mn(OH) 2 , Fe(OH) 2 , Fe(OH) 3

Гидроксиды нерастворимы в избытке едкой щелочи

Ni 2+ , Co 2+ , Cu 2+

Избыток 25%-ного NH 3

Ni(NH 3) 4 2+ , Co(NH 3) 4 2+ , Cu(NH 3) 6 2+

Гидроксиды растворимы в избытке аммиака

Анализ анионов В основу классификации анионов положено различие в растворимости солей бария и серебра. В соответствии с наиболее распространенной классификацией анионы делятся на три аналитические группы, как это представлено в таблице 2.

Таблица 2 - Классификация анионов

Обычно сначала проводят исследование объекта на катионы. Из отдельных проб раствора при помощи групповых реактивов определяется, катионы каких аналитических групп присутствуют в растворе, а затем уже определяют в нём анионы.

1.3 Ход определения состава неизвестного образца

Для анализа выдано вещество представляющее собой смесь двух солей (пробирка №13). В состав солей по условию могут входить только следующие ионы:

1. К + ,Na + ,NH 4 +

4. Zn 2+ ,Al 3+ ,Cr 3+

5.Mg 2+ ,Fe 2+ ,Fe 3+

6. Cu 2+ ,Co 2+ ,Ni 2+

1. SO 4 2- , SO 3 2- ,СO 3 2- , РO 4 2-

3. NO 3 - , NO 2 - ,CH 3 COO -

Анализ вещества проводится в соответствии со схемой, описанной в пункте 1.2.

Предварительные испытания

Выданное вещество представляет собой мелкозернистую смесь бесцветных кристаллов и крупинок. По окраске вещества можно предположить, что в нем отсутствуют катионы Fe 3+ ,Cr 2+ , Cu 2+ ,Co 2+ ,Ni 2+ .

Окрашивание пламени

Нихромовую проволоку смоченную в разбавленной соляной кислоте прокаливаем в пламени горелки, затем охлаждаем до комнатной температуры. На подготовленную подобным образом проволоку помещаем несколько кристалликов анализируемого вещества. Пламя горелки окрашивается в бледно-голубой цвет, что свидетельствует о возможном наличии в анализируемом веществе катиона Pb 2+ и отсутствии катионов К + , Ba 2+ ,Ca 2+ , Cu 2+

Испытание на продукты термического разложения

Небольшую порцию анализируемого вещества помещаем на дно тугоплавкой пробирки и нагреваем в пламени горелки. Наблюдаем выделение желтых паров, на основании этого можно сделать предположение о возможном наличии в анализируемом образце нитратов. Уравнения(1,2) образования этих веществ приведены ниже:

Разложение нитратов:

а) от щелочно-земельных до меди (включительно)

Me(NO 3) 2 > 2MeO + + 2NO 2 + O 2 (1)

б) нитратов серебра, ртути и др.

2MeNO 3 >2Me + 2NO 2 + O 2 (2)

Отсутствие темного налета на стенках холодной части пробирки также указывает на отсутствие йодидов в присутствии окислителей.

Вывод: в анализируемом веществе, возможно, присутствуют нитраты и отсутствуют йодсодержащие ионы.

Действие разбавленной серной кислоты

К небольшому количеству выданного вещества добавляем несколько капель разбавленной H 2 SO 4 и нагреваем в пламени горелки. Выделяется газ с характерным запахом уксуса.

Химизм процесса приведен ниже (уравнение (3)):

CH 3 COO - + H + > CH 3 COOH^ (3)

Следовательно, в анализируемом веществе, возможно, присутствует анион CH 3 COO - .

Действие концентрированной серной кислоты

К небольшой массе анализируемого образца медленно добавляем концентрированную серную кислоту. Выделяются бесцветные пары с характерным запахом уксусной кислоты, что еще раз подтверждает наличие в анализируемом образце аниона CH 3 COO -

Выделения паров с характерным запахом хлора и фиолетовых паров йода в соответствии с уравнениями (4-6):

Cl - + H + > HCl^ (4)

2Cl - + SO 4 2- + 2H + > Cl 2 ^ + SO 3 2- + H 2 O (5)

2J - + H 2 SO 4 > J 2 + SO 3 2- + H 2 O (6)

не наблюдаем, следовательно, в анализируемом веществе, возможно, отсутствуют анионы Cl - ,I - .

Проба на присутствие окислителей

Берем смесь Н 2 SO 4 с KI , добавляем несколько кристаллов анализируемого вещества. Выделения свободного йода, который вызывает окрашивание раствора в бурый цвет в соответствии с уравнениями (7-9)не происходит, на основании чего можно сделать предположение об отсутствии в данном веществе анионов NO 2 - , Fe 3+ , Cu 2+

Химизм процесса:

2J - + 2NO 2 - + 4H + > J 2 + 2NO + 2H 2 O (7)

2J - + 2Fe 3+ > J 2 + 2Fe 2+ (8)

4J - + 2Cu 2+ > J 2 + 2CuJv (9)

Проба на присутствие восстановителей

К небольшой порции анализируемого вещества добавляем смесь разбавленных растворов KMnO 4 +H 2 SO 4 . Обесцвечивание раствора в соответствии с ниже приведенным уравнениями (10-14) не наблюдаем,что свидетельствует о возможном отсутствии в анализируемом образце

NO 2 - , SO 3 2- , J - , Cl - , Fe 2+

2J - + 2NO 2 - + 4H + > J 2 + 2NO + 2H 2 O (10)

5SO 3 2- + 2MnO 4 - + 6H + > 5SO 4 2- + 2Mn 2+ + 3H 2 O (11)

16H + + 10J - + 2MnO 4 - > 5J 2 + 2Mn 2+ + 8H 2 O (12)

16H + + 10Cl - + 2MnO 4 - > 5Cl 2 + 2Mn 2+ + 8H 2 O (13)

5Fe 2+ + MnO 4 - + 8H + > 5Fe 3+ + Mn 2+ + 4H 2 O (14)

Растворение в воде

Анализируемое вещество полностью растворяется в воде. На основании этого можно сделать предположение об одновременном нахождении в растворе ионов Ag, Pb 2+ ,CH 3 COO - ,NO 3 - (поскольку только с этими анионами, открытый в предварительных испытания катион свинца, полностью растворяется в воде).

Проба на присутствие NH 4

В анализируемую смесь добавляем несколько капель едкого натра и нагреваем в пламени газовой горелки, запаха аммиака не чувствуется следовательно анион NH 4 + отсутствует.

Проба на Fe 2+

В пробирку с анализируемым веществом вносим несколько капель раствора HCl и раствор красной кровяной соли K 3 синего окрашивания раствора в соответствии с нижеприведенным уравнением (15) не наблюдаем, следовательно, катион Fe 2+ отсутствует.

3- + Fe 2+ >Fe 3 2 (15)

Проба на Fe 3+

В пробирку с раствором анализируемого вещества прибавляем несколько капель воды и несколько капель концентрированного раствора роданида аммония. Кроваво-красного окрашивания в соответствии с уравнением (16) не наблюдаем, следовательно, катион Fe 3+ отсутствует.

Fe 3+ +3CNS - >Fe(CNS) 3 (16)

Вывод: по результатам предварительным испытаний можем сделать предположение о присутствии в анализируемой смеси следующих ионов: Pb 2+ ,CH 3 COO - ,NO 3 -

Систематический анализ

Проба на катионы

Проба на катионы второй аналитической группы

К анализируемому образцу добавляем, несколько капель соляной кислоты HCl наблюдаем, выпадение осадка в соответствии с уравнениями(17,18), что подтверждает возможное присутствие в данном веществе катионов Pb 2+ ,Ag +

Химизм процесса:

Pb 2+ +2HCl>PbCl 2 v (17)

Ag + +HCl>AgClv (18)

Проверим образовавшийся осадок на растворение в горячей воде. Добавим к полученному осадку немного горячей воды. Осадок растворяется, следовательно, катион Ag 2+ отсутствует.

Для того, чтобы точно удостовериться в присутствии в анализируемом образце катиона Pb 2+ проведем следующий опыт. К нескольким каплям раствора анализируемого вещества добавим такое же количество KI. Выпадает желтый осадок (уравнение (19)).

Pb 2+ +2KI>PbI 2 v +2K + (19)

В пробирку прибавляем несколько капель воды и 2М раствора СН 3 СООН, нагреваем, при этом осадок растворяется. Погружаем пробирку в холодную воду. Выпадают блестящие золотистые кристаллы в соответствии с уравнением (20).

PbI 2 v + CH 3 COOH> I+HI. (20)

Таким образом доказали наличие в анализируемом веществе катиона свинца, что согласуется с предварительными испытаниями (проба на окрашивание пламени).

Поскольку катион свинца мешает открытию катионов третьей и первой аналитических групп, необходимо его отделить. Для этого к раствору анализируемого вещества добавим несколько капель 10н HCl, перемешиваем стеклянной палочкой и фильтруем. Промоем осадок водой подкисленной 2н. раствором соляной кислоты (для понижения растворимости хлорида свинца). Фильтрат №1 возможно содержит следующие катионы Ca 2+ ,Ba 2+ ,K + ,Na + ,а также небольшое количество уже открытого катиона Pb 2+ .Затем к фильтрату добавляем несколько капель раствора сульфата аммония (NH 4) 2 SO 4 , нагреваем на кипящей водяной бане несколько минут, даем, немного постоять, и снова фильтруем. Фильтрат№2 возможно содержит катионы К + , Na + , Ca 2+ .Осадок, содержащий Pb 2+ и возможно содержащий катионы Ba 2+ , Ca 2+ обрабатываем, горячим 30% раствором CH 3 COONH 4 до полного удаления PbSO 4 , фильтруем, осадок промываем дистиллированной водой и переносим в фарфоровую чашку, добавляем несколько миллилитров раствора карбоната калия K 2 CO 3 кипятим несколько минут, нагревая на асбестовой сетке в пламени газовой горелки. После охлаждения в фарфоровую чашку добавляем несколько миллилитров воды, перемешиваем, даем отстояться и прозрачный слой жидкости сливаем. Затем снова добавим карбонат калия K 2 CO 3 , опять нагреваем несколько минут, и фильтруем. Осадок промываем теплой водой до полного удаления анионов SO 4 2- . Осадок растворяем в пробирке в небольшой порции уксусной кислоты и промываем небольшим количеством дистиллированной воды. Далее проведем анализ на присутствие катиона Ва 2+ , для этого к полученному раствору прибавим несколько капель раствора хромата калия K 2 CrO 4 осадка не образуется следовательно катион Ва 2+ отсутствует. Проверим полученный раствор на наличие катиона Ca 2+ , добавим карбонат натрия, перемешаем стеклянной палочкой, образования осадка не наблюдаем, следовательно, катион Ca 2+ отсутствует. Проверим фильтрат№2 на наличие катиона К + для этого к фильтрату добавим раствор Na 3 и немного уксусной кислоты, желтого осадка комплексной соли кобальта не образуется следовательно катион К + отсутствует. Проверим фильтрат № 2 на присутствие катиона Na + , добавим несколько капель раствора KH 2 SbO 4 ,белого кристаллического осадка не образуется, следовательно катион Na + отсутствует. Для открытия катионов четвертой, пятой и шестой аналитических групп, к фильтрату, оставленному после отделения свинца добавим гидроокись натрия образования осадка не наблюдаем следовательно в анализируемой смеси отсутствуют катионы: Cu 2+ ,Zn 2+ ,Al 3+ ,

Mg 2+ ,Cr 3+ ,Ni 2+ ,Co 2+

Проба на анионы

Присутствие катиона Pb 2+ исключает наличие в анализируемом веществе анионов первой и второй аналитических групп, в противном случае при растворении в воде наблюдалось бы выпадение осадка.

Несмотря на то, что в предварительных испытаниях мы не делали предположение о присутствии аниона NO 2 - , проверим анализируемую смесь на присутствие данного аниона. Добавим к раствору анализируемой смеси несколько капель раствора Грисса-Илосвая, красного окрашивания раствора не наблюдаем, следовательно анион NO 2 - действительно в данной смеси отсутствует.

Качественные реакции на анионы третьей аналитической группы

Подтвердим присутствие в анализируемом веществе аниона NO 3- . Проведем следующую реакцию: к нескольким каплям раствора неизвестного вещества прибавим 2-3 капли дефениламина и 5 капель концентрированной серной кислоты. Наблюдается темно-синяя окраска образующегося дифенилбензидина (уравнение (21)):

2(C 6 H 5) 2 NHC 6 H 5 -N -C 6 H 4 -C 6 H 4 -NH-C 6 H 5 C 6 H 5 -N= C 6 H 4 = C 6 H 4 =N- C 6 H 5 (21)

По условию задачи в выданной смеси могут присутствовать два аниона. По результатам предварительных испытаний присутствие анионов NO 2 - , SO 4 2- , CO 3 2- , SO 3 2- , PO 4 3- , Cl - , I - - исключили, следовательно, в анализируемой смеси присутствует анион CH 3 COO - , наличие которого подтверждает выделение паров уксуса при действии разбавленной серной кислоты (предварительные испытания уравнение (3) ).

На основе вышеперечисленных опытов можно сделать вывод о присутствии в анализируемой смеси катиона Pb 2+ и анионов CH 3 COO - ,NO 3 - .

Проанализировав, экспериментальные данные и предварительные наблюдения, приходим к выводу, что данная смесь состоит из двух солей Pb(NO 3) 2 и (CH 3 COO) 2 Pb.

Проанализируем физические свойства этих соединений.

Ацетат свинца(II) Рb(ОСОСН 3) 2 - бесцветные кристаллы; т. пл. 280 °С; -- 960,90 кДж/моль; при плавлении частично испаряется, при более высоких температурах разлагается до Рb, СО 2 , Н 2 О и ацетона. Растворимость в воде (г в 100 г): 29,3 (10 °С), 55,2 (25 °С) и 221,0 (50 °С);

Нитрат свинца Pb(NO 3) 2 , бесцветные кристаллы. При нагревании выше 200°С начинает разлагаться без плавления с выделением NО 2 и О 2 и последовательным образованием оксонитратов Pb(NO 3) 2 2РbО, Pb(NO 3) 2 , 5РbО и оксида РbО при 500-550 °С. Растворимость в воде (г в 100 г):45,5 (10°С), 58,5 (25°С), 91,6 (60°С) и 116,4 (80°С).

Действительно, выданное вещество, предположительно состоящее из солей Pb(NO 3) 2 и (CH 3 COO) 2 Pb представляет собой смесь бесцветных кристаллов, что согласуется с вышеприведенными справочными данными. Пламя горелки (при проведении пробы на окрашивание племени) окрашивается в бледно-голубой цвет, что свидетельствует о наличии в выданном образце свинца. При прокаливании анализируемое вещество разлагается с выделением желтых паров, соответствующих уравнению(22), это подтверждает наличие в данной смеси нитрата свинца.

Pb(NO 3) 2 > 2PbO + 2NO 2 + O 2 (22)

При действии разбавленной серной кислоты на сухой образец наблюдали выделение паров с характерным запахом уксуса, следовательно, в данной смеси присутствует ацетат свинца. Таким образом, сопоставив справочные данные , результаты предварительных наблюдений и экспериментальные данные приходим к выводу, что сделанное ранее предположение о составе смеси подтверждается.

неизвестный образец серная кислота реакция

2. Расчет теоретической кривой титрования

2.1 Теоретические основы титриметрического анализа

Титриметрический анализ основан на измерении количества (объема или массы) раствора титранта (реактива точно известной концентрации), затраченного на реакцию с определяемым компонентом. Раствор реактива вносят до тех пор, пока его количество не будет эквивалентным количеству определяемого вещества. Применяемый в титриметрическом анализе раствор реактива называют титрованным или стандартным. концентрацию растворов в титриметрическом анализе выражают числом грамм-эквивалентов в литре раствора.

Титриметрические методы подразделяются на две большие группы. В первую группу входят методы, основанные на ионных реакциях: нейтрализация, осаждение и комплексообразование. Во вторую группу входят окислительно-восстановительные методы, основанные на реакциях окисления-восстановления, которые связаны с переходом электронов от одной частицы к другой. Применяемые реакции должны удовлетворять ряду требований. Реакция должна проходить количественно по определенному уравнению без побочных реакций. Реакция должна протекать с достаточной скоростью, поэтому необходимо создать оптимальные условия, обеспечивающие быстрое течение реакции. Установление точки эквивалентности должно производиться достаточно надежно.

Методы нейтрализации. К ним относятся определения, основанные на взаимодействии кислот и щелочей. Методы нейтрализации обычно подразделяют на ацидиметрию (определение оснований), алкалиметрию (определение кислот) и галометрию (определение солей).

Методы осаждения подразделяют на аргентометрию, позволяющую определять путем титрования раствором нитрата серебра, хлориды, иодиды, цианиды, роданиды; на меркурометрию, основанную на титровании раствором нитрата закисной ртути.

Методы комплексообразования основаны на применении реакций, при которых образуются комплексные соединения. Они подразделяются на меркуриметрию, основанную на титровании раствором нитрата ртути(II) при этом образуется малодиссоциированный хлорид ртути (II), комплексонометрию, основанную на применении органических реактивов-комплесонов; фторометрию, основанную на применении NaF.

Методы окисления-восстановления основаны на применении различных окислителей и восстановителей для титрования.

Перманганатометрия. Метод предложен в 1846г. Ф.Маргериттом для титрования растворов солей железа (II).

Броматометрия- метод основанный на окислении раствором KBrO 3 в кислой среде. Цериметрия.1861г. Л.Ланге предложил в качестве окислителя раствор Ce(SO 4) 2. сульфат церия применяется для титрования многих восстановителей в сильнокислых растворах солей железа(II), мышьяковистой, щавелевой кислот и д.р.

Титанометрия. Соли титана(III) применяются как энергичные восстановители при определении главным образом органических веществ.

Нитритометрия основана на титровании стандартным раствором нитрита натрия. Наиболее часто нитритометрию применяют для определения органических веществ по реакции диазотирования или нитрозирования.

Аскорбинометрия основана на использовании аскорбиновой кислоты как восстановителя. Ее применяют для прямого титрования различных окислителей.

2.2 Комплексонометрическое титрование

Комплексонометрия (хелатометрия), титриметрический метод анализа, основанный на образовании прочных внутрикомплексных соединений (хелатов) между катионами металлов и комплексонами. наиболее часто применяют иминодиуксусную, нитрилотриуксусную (комплексон I) и этилендиаминтетрауксусную (комплексон II) кислоты, динатриевую соль последней (комплексон III, ЭДТА), а также 1,2-диаминоциклогексантетрауксусную кислоту (комплексон IV). Широкое использование комплексонов II и III обусловлено тем, что их реакции с катионами металлов протекают полно и в соответствии со стехиометрией, их растворы устойчивы при хранении; эти реагенты доступны и можно получить их препараты высокой чистоты. Конечную точку титрования устанавливают визуально по изменению окраски комплексонометрических индикаторов (металлоиндикаторов), а также потенциометрически, фотометрически, амперометрически или др. методами.

Комплексоны - неизбирательные реагенты. Селективность комплексонов повышают различными приемами: уменьшением рН среды, выделением (осаждением, экстракцией) определяемого иона, маскированием, изменением степени окисления катиона и т.д. .

Практическое применение

Высокая устойчивость координационных соединений металлов с Y 4- открывает принципиальную возможность титриметрического определения большой группы катионов. Различные способы комплесонометрического титрования могут быть следующим: прямое, обратное, по методу вытеснения и д.р.

При прямом титровании к раствору исследуемого иона небольшими порциями добавляют стандартный раствор комплексона. Значение рН при титровании должно быть больше 7. Но это может вызвать выпадение гидроокисей металлов. Для предупреждения применяют аммиачный буфер (для никеля, меди, цинка и кадмия) и еще добавляют тартраты или цитраты (для марганца и свинца). Так как в точке эквивалентности концентрация определяемого иона резко уменьшается, то эту точку нужно фиксировать по изменению окраски индикатора, образующего внутрикомплексное соединение с катионом металла. Индикатор реагирует на изменение показателя концентрации катиона металла рМе аналогично тому, как рН индикатор реагирует на изменение рН. Таким образом, определяют ионы Са, Sr, Ba, Cu, Mg, Mn, Zn и др. До комплексонометрического метода не существовало достаточно надежных методов анализа соединений содержащих эти металлы.

Обратное титрование применяют тогда, когда рН, необходимое для образования комплекса, вызывает осаждение определяемого металла, а также при отсутствии надежного индикатора на ион металла. Титрованный раствор ЭДТА добавляют в небольшом избытке к раствору анализируемой соли. Устанавливают, вводя буферный раствор, нужный рН. Избыток ЭДТА оттитровывают раствором хлорида магния или хлорида цинка. Точка эквивалентности фиксируется по изменению окраски индикатора. Обратное титрование применяют также. Когда ион металла взаимодействует с ЭДТА или метало индикатором замедленно, например в случае иона никеля. Этот метод применяют в случае, когда прямое титрование невозможно вследствие образования малорастворимых осадков катионов металлов с присутствующими в растворе анионами, например PbSO 4 ,CaC 2 O 4 ·2H 2 O. Осадки в процессе титрования должны раствориться.

Титрование путем вытеснения одного катиона другим применяют в том случае, когда не удается подобрать соответствующего индикатора для определяемого иона или же когда катион металла при заданном рН не может быть переведен из осадка в раствор. В этом случае можно соединение с комплексоном получить обменной реакцией при титровании соли определяемого металла раствором соединения какого-либо другого металла с ЭДТА. Например, титруют раствором комплексоната магния или цинка. Для применения этого метода необходимо, чтобы образующееся соединение определяемого металла с комплексоном было прочнее, чем комплексонат магния или цинка. В настоящее время комплексонометрические методики разработаны для анализа очень многих объектов.

Определение жесткости воды было первым практически важным применением ЭДТА в аналитической химии.

Жесткость воды характеризуют молярной концентрацией эквивалентов кальция и магния.

Комплексонометрическое титрование используют также для анализа различных сплавов, определения сульфатов, фосфатов и других анионов, для анализа органических соединений.

Физико-химические методы установления точки эквивалентности в комплексонометрии

Различные физико-химические методы обычно используют для установления оптимальных условий титрования.

Кроме того, с помощью физико-химических методов можно проводить определения элементов, для которых еще не найдены цветные индикаторы.

Потенциометрическое титрование комплексоном выполняют с помощью ионоселективных электродов или используют инертные электроды из благородных металлов, реагирующие на изменения окислительно-восстановительного потенциала системы.

С помощью биметаллической пары электродов платина-вольфрам можно титриметрически определить свинец, медь, цинк, никель, кадмий и другие элементы.

Широко применяют амперометрическое титрование ЭДТА для определения никеля, цинка, кадмия, свинца.

Используют кондуктометрическое, фотометрическое, термометрическое и другие виды титрования комплексоном с физико-химической индикацией точки эквивалентности.

2.3 Расчет кривой титрования методом комплексонометрии

Оценить возможность титриметрического определения и построить кривую титрования для следующих данных 0,05М ZnCl 2 0,025M Na 2 H 2 Y, pH 9, концентрация аммиака 0,1 моль/л.

Запишем уравнение титриметрической реакции:

Zn 2+ + H 2 Y 2- >ZnY 2- +2H +

Расчет кривой титрования сводится к расчету показательной концентрации Zn 2+ в зависимости от объема титранта. Устойчивость ZnY 2- зависит от кислотности среды (чем выше кислотность, тем ниже устойчивость), в связи с этим для связывания ионов водорода, количественное определение ZnCl 2 проводят в среде аммонийного буфера.

Рассчитаем объем титранта по закону эквивалентов:

Наличие иона Н + в среде, где присутствует трилон В, приводит к протеканию следующих конкурирующих реакций:

Y 4- +H + HY 3- , = K 4 ;

HY 3- +H + H 2 Y 2- , = K 3 ;

H 2 Y 2- +H + H 3 Y - , = K 2 ;

H 3 Y - +H + H 4 Y , = K 1 ;

где K 1 , K 2 , K 3 , K 4 - константы ступенчатой диссоциации H 4 Y (K 1 =1,0 . 10 -2 , K 2 =2,1 . 10 -3 , K 3 =6,9 . 10 -7 , K 4 =5,5 . 10 -11).

Рассчитаем условную константу устойчивости, которая выражает прочность комплексов цинка с трилоном В:

Рассчитаем коэффициенты конкурирующих реакций:

Zn 2+ участвует также в конкурирующих реакциях образования комплексных соединений с аммиаком NH 3 в соответствии со следующими уравнениями реакций:

Zn 2 + +NH 3 Zn(NH 3) 2+ ,

Zn 2 + +2NH 3 Zn(NH 3) 2 2+ ,

Zn 2+ +3NH 3 Zn(NH 3) 3 2+ ,

Zn 2+ +4NH 3 Zn(NH 3) 4 2+ ,

По данным литературного источника

Подставив, выражения (4) и (5) в уравнение константы устойчивости (3) получим:

1) до начала титрования, в отсутствии конкурирующих реакций с участием цинка, концентрация ионов Zn 2+ равна концентрации соли ZnCl 2

ZnCl 2 >Zn 2+ +2Cl -

C=0.05 моль/л

2)до точки эквивалентности величина pZn определяется концентрацией неоттитрованного иона цинка уравнение (а), так диссоциацией комплексоната, образующегося по уравнению(б) при избытке ионов цинка можно пренебречь.

а)Zn 2 + +H 2 Y 2- > ZnY 2- +2H +

б)ZnY 2- -Zn 2 + +Y 4- .

Проведем расчет для точек

3) В точке эквивалентности расчет концентрации ионов Zn 2 + проводится с учетом уравнения реакции диссоциации комплекса:

ZnY 2- -Zn 2+ +Y 4-

Данное равновесие количественно описывается константой:

1,8 10 -5

4)после точки эквивалентности концентрация комплексоната металла остается постоянной

Концентрация ионов лиганда определяется избытком добавленного титранта:

Для найденных значений и вычисляются значения pZn 2+ и pY 4- и строится кривая титрования в координатах pZn 2+ - V титранта. Проводится анализ кривой титрования, рассчитывается скачок титрования, выбирается индикатор.

В таблице 3 представлены данные расчета изменений концентрации ионов определяемого вещества и титранта в зависимости от объема добавляемого титранта (при условии что объем раствора в процессе титрования не изменяется).

Таблица 3-Изменение pZn при титровании трилоном Б.

Проанализируем полученную кривую. Как видно, в области точки эквивалентности происходит резкое изменение концентрации ионов цинка, которое можно отметить с помощью соответствующего индикатора. Скачок титрования составляет pZn 2+ =6.5-3,6=2,9, то есть величину достаточную для фиксирования точки эквивалентности. На основании этого можно сделать вывод о возможности комплексонометрического определения цинка в области заданных концентраций.

Индикаторами в комплексонометрии являются металлоидикаторы, образующие с ионами металлов интенсивно окрашенные соединения, константы устойчивости которых, однако, ниже чем константы бесцветных комплексов трилона Б с ионами металлов .

Подбор индикатора осуществляется в соответствии с условиями титрования, описанными в справочнике Лурье . Сопоставив условия титрования, представленные в задаче, с данными из справочника , приходим к заключению что,в данном случае индикатором является 0,1% водный раствор кислотный хром синий К, обеспечивающий переход окраски из розовой в серо-голубую.

2.4 Определение анионного состава сточных вод

В подавляющем большинстве случаев солевой состав природных вод определяется катионами Са 2+ , Мg 2+ , Nа + , К + и анионами НСO 3 - , Сl - , SO 4 2- . Эти ионы называются главными ионами воды или макрокомпонентами; они определяют химический тип воды. Остальные ионы присутствуют в значительно меньших количествах и называются микрокомпонентами; они не определяют химический тип воды.

По преобладающему аниону воды делятся на три класса: гидрокарбонатные, сульфатные и хлоридные. Воды каждого класса делятся, в свою очередь, по преобладающему катиону на три группы: кальциевую, магниевую и натриевую.

В природных водах присутствуют также растворенные газы. В основном это газы, которые диффундируют в воды из атмосферы воздуха, такие как кислород, углекислый газ, азот. Но в то же время в подземных водах или водах нецентрализованных источников водоснабжения, в минеральных и термальных водах могут присутствовать сероводород, радиоактивный газ радон, а также инертные и другие газы.

Существует несколько методов определения анионного состава воды.

Метод комплексонометрического титрования

Определение многих анионов основано на осаждении их малорастворимых соединений титрованным раствором какого-либо катиона, избыток которого затем оттитровывается ЭДТА. Сульфат по этой методике осаждают в виде BaSO 4 хлоридом бария и последующим комплексонометрическим титрованием избытка ионов Ba 2+ по специальной методике. Фосфат осаждают в виде MgNH 4 PO 4 и оставшееся в растворе количество магния определяют комплексонометрически.

Хроматография

Ионная хроматография - метод качественного и количественного определения ионов в растворах. Он позволяет определять неорганические и органические анионы, катионы щелочных и щелочноземельных металлов, катионы переходных металлов, амины и другие органические соединения в ионной форме. Во всем мире ионная хроматография используется чаще других методов, обеспечивая выявление множества компонентов в любой воде. Для проведения анализов используются ионные хроматографы. Основным элементом любого хроматографа является разделяющая аналитическая колонка. Анализ таких неорганических анионов, как фторид, хлорид, нитрит, нитрат, сульфат и фосфат, методом ионной хроматографии многие годы является самым распространенным во всем мире. Кроме ионохроматографических колонок для определения основных не органических анионов разработаны и успешно применяются высокоэффективные колонки, наряду со стандартными анионами они выявляют и оксианионы такие как оксихалиды: хлорит, хлорат, бромат и др.

Аргентометрия.

Аргентометрия (от лат. argentum - серебро и греч. metreo - измеряю), титриметрический метод определения анионов (Hal - , CN - , PO 4 3- , CrO 4 2- и др.), образующих малорастворимые соединения или устойчивые комплексы с ионами Ag + Исследуемый раствор титруют стандартным раствором AgNO3 или избыток последнего, введенный в анализируемый раствор, оттитровывают стандартным раствором NaCl (т. наз. обратное титрование).

Подобные документы

    Теоретические сведения по качественному анализу. Методы анализа неизвестного образца. Основы титриметрического анализа. Комплексонометрическое титрование, расчет кривой титрования методом комплексонометрии. Определение анионного состава сточных вод.

    курсовая работа , добавлен 22.01.2011

    Практическое значение аналитической химии. Химические, физико-химические и физические методы анализа. Подготовка неизвестного вещества к химическому анализу. Задачи качественного анализа. Этапы систематического анализа. Обнаружение катионов и анионов.

    реферат , добавлен 05.10.2011

    Физические и физико-химические свойства азотной кислоты. Дуговой способ получения азотной кислоты. Действие концентрированной серной кислоты на твердые нитраты при нагревании. Описание вещества химиком Хайяном. Производство и применение азотной кислоты.

    презентация , добавлен 12.12.2010

    Понятие количественного и качественного состава в аналитической химии. Влияние количества вещества на род анализа. Химические, физические, физико-химические, биологические методы определения его состава. Методы и основные этапы химического анализа.

    презентация , добавлен 01.09.2016

    Проведение анализа вещества для установление качественного или количественного его состава. Химические, физические и физико-химические методы разделения и определения структурных составляющих гетерогенных систем. Статистическая обработка результатов.

    реферат , добавлен 19.10.2015

    Применение, физические и химические свойства концентрированной и разбавленной серной кислоты. Производство серной кислоты из серы, серного колчедана и сероводорода. Расчет технологических параметров производства серной кислоты, средства автоматизации.

    дипломная работа , добавлен 24.10.2011

    Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

    презентация , добавлен 27.04.2015

    Понятие анализа в химии. Виды, этапы анализа и методы: химические (маскирование, осаждение, соосаждение), физические (отгонка, дисцилляция, сублимация) и физико-химические (экстракция, сорбция, ионный обмен, хроматография, электролиз, электрофорез).

    реферат , добавлен 23.01.2009

    Задачи и методы качественного и количественного анализа. Аналитическая система катионов. Закон действующих масс. Теория электролитической диссоциации. Окислительно-восстановительные реакции. Характеристика комплексных соединений. Буферные растворы.

    курс лекций , добавлен 15.12.2011

    Сущность и предмет аналитической химии как науки. Задачи и методы качественного и количественного анализа химических веществ. Примеры качественных реакций на катионы. Характеристика явлений, сопровождающих реакции мокрым (в растворах) и сухим путями.

Основная цель аналитической химии - обеспечить в зависимости от поставленной задачи точность, высокую чувствительность, экспрессность и (или) избирательность анализа. Разрабатываются методы, позволяющие анализировать микрообъекты (смотри Микрохимический анализ), проводить локальный анализ(в точке, на поверхности и т.д.), анализ без разрушения образца (см. Неразрушающий анализ), на расстоянии от него (дистанционный анализ), непрерывный анализ (например, в потоке), а также устанавливать, в виде какого химического соединения и в составе какой фазы существует в образце определяемый компонент (фазовый анализ). Важные тенденции развития аналитической химии - автоматизация анализов, особенно при контроле технологических процессов и математизация, в частности широкое использование ЭВМ.

Структура. Можно выделить три крупных направления аналитической химии: общие теоретические основы; разработка методов анализа; аналитическая химия отдельных объектов. В зависимости от цели анализа различают качественный анализи количественный анализЗадача первого - обнаружение и идентификация компонентов анализируемого образца, второго - определение их концентраций или масс. В зависимости от того, какие именно компоненты нужно обнаружить или определить, различают изотопный анализ, элементный анализ, структурно-групповой (в т. ч. функциональный анализ), молекулярный анализ, фазовый анализ. По природе анализируемого объекта различают анализ неорганических и органических веществ.

В теоретич. основах аналитической химии существенное место занимает метрология химического анализа, в том числе статистическая обработка результатов. Теория аналитической химии включает также учение об отборе и подготовкеаналитических проб. о составлении схемы анализа и выборе методов, принципах и путях автоматизации анализа, применения ЭВМ, а также основы народнохозяйств. использования результатов хим. анализа. Особенность аналитической химии - изучение не общих, а индивидуальных, специфических свойств и характеристик объектов, что обеспечивает избирательность мн. аналитичекских методов. Благодаря тесным связям с достижениями физики, математики, биологии и разл. областей техники (это особенно касается методов анализа) аналитическая химия превращена в дисциплину на стыке наук.

В аналитической химии различают методы разделения, определения (обнаружения) и гибридные, сочетающие методы первых двух групп. Методы определения подразделяют на химические методы анализа (гравиметрический анализ, титриметрия), физико-химические методы анализа (например, электрохимические, фотометрические, кинетические),физические методы анализа (спектральные, ядерно-физические и другие) и биологические методы анализа. Иногда методы определения делят на химические, основанные на химических реакциях, физические, базирующиеся на физических явлениях, и биологические, использующие отклик организмов на изменения в окружающей среде.

Аналитическая химия определяет общий подход к выбору путей и методов анализа. Разрабатываются способы сопоставления методов, условия их взаимозаменяемости и сочетания, принципы и пути автоматизации анализа. Для практич. использования анализа необходима разработка представлений о его результате как показателе качества продукции, учение об экспрессном контроле технол. процессов, создание экономичных методов. Большое значение для аналитиков, работающих в различных отраслях народного хозяйства, имеет унификация и стандартизация методов. Разрабатывается теория оптимизации кол-ва информации, необходимой для решения аналитической задачи.

Методы анализа . В зависимости от массы или объема анализируемого образца методы разделения и определения иногда подразделяют на макро-, микро- и ультрамикрометоды.

К разделению смесей обычно прибегают в тех случаях, когда методы прямого определения или обнаружения не позволяют получить правильный результат из-за мешающего влияния других компонентов образца. Особенно важно так называемое относительное концентрирование - отделение малых количеств определяемых компонентов от значительно больших количествв основных компонентов пробы. Разделение смесей может базироваться на различии в термодинамических, или равновесных, характеристиках компонентов (константы обмена ионов, константы устойчивости комплексов) или кинетических параметров. Для разделения применяют главным образом хроматографию, экстракцию, осаждение, дистилляцию, а также электрохимические методы, например электроосаждение.

Физико-химические методы анализа , основаны на зависимости физических свойств вещества от его природы, причем аналитический сигнал представляет собой величину физического свойства, функционально связанную сконцентрацией или массой определяемого компонента. Физико-химические методы анализа могут включать химические превращения определяемого соединения, растворение образца, концентрирование анализируемого компонента, маскирование мешающих веществ и других. В отличие от «классических» химических методов анализа, где аналитическим сигналом служит масса вещества или его объем, в физико-химические методы анализа в качестве аналитического сигнала используют интенсивность излучения, силу тока, электропроводность, разность потенциалов и др.

Важное практическое значение имеют методы, основанные на исследовании испускания и поглощения электромагнитного излучения в различных областях спектра. К ним относится спектроскопия (например, люминесцентный анализ, спектральный анализ, нефелометрия и турбидиметрия и другие). К важным физико-химическим методам анализа принадлежат электрохимические методы, использующие измерение электрических свойств вещества.

Любой метод анализа использует определенный аналитический сигнал, который в данных условиях дают конкретные элементарные объекты (атомы, молекулы, ионы), из которых состоят исследуемые вещества.

Аналитический сигнал дает информацию как качественного, так и количественного характера. Например, если для анализа используются реакции осаждения, качественную информацию получают по появлению или отсутствию осадка. Количественную информацию получают по величине массы осадка. При испускании веществом света в определенных условиях качественную информацию получают по появлению сигнала (испускание света) при длине волны, соответствующей характерному цвету, а по интенсивности светового излучения получают количественную информацию.

По происхождению аналитического сигнала методы аналитической химии можно классифицировать на химические, физические и физико-химические.

В химических методах проводят химическую реакцию и измеряют либо массу полученного продукта – гравиметрические(весовые) методы, либо объем реагента, израсходованный на взаимодействие с веществом, – титриметрические,газоволюмометрические (объемные) методы.

Газоволюмометрия (газовый объёмный анализ) основана на избирательной абсорбции составных частей газовой смеси в сосудах, заполненных тем или иным поглотителем, c последующим измерением уменьшения объёма газа c помощью бюретки. Tак, диоксид углерода поглощают раствором гидроксида калия, кислород - раствором пирогаллола, монооксид углерода - аммиачным раствором хлорида меди. Газоволюмометрия относится к экспрессным методам анализа. Oна широко используется для определения карбонатов в г. п. и минералах.

Xимические методы aнализа широко используют для анализа руд, горных пород, минералов и других материалов при определении в них компонентов c содержанием от десятых долей до нескольких десятков процента. Xимические методы анализа характеризуются высокой точностью (погрешность анализа обычно составляет десятые доли процента). Однако эти методы постепенно вытесняются более экспрессными физико-химическими и физизическими методами анализа.

Физические методы анализа основаны на измерении какого-либо физического свойства веществ, являющегося функцией состава. Например, рефрактометрия основана на измерении относительных показателей преломления света. В активационном анализе измеряется активность изотопов и т. д. Часто при проведении анализа предварительно проводят химическую реакцию, и концентрацию полученного продукта определяют по физическим свойствам, например по интенсивности поглощения светового излучения цветным продуктом реакции. Такие методы анализа называют физико-химическими.

Физические методы анализа характеризуются высокой производительностью, низкими пределами обнаружения элементов, объективностью результатов анализа, высоким уровнем автоматизации. Физические методы анализа используют при анализе горных пород и минералов. Hапример, атомно-эмиссионным методом определяют вольфрам в гранитах и сланцах, сурьму, олово и свинец в горных породах и фосфатах; атомно-абсорбционным методом - магний и кремний в силикатах; рентгенофлуоресцентным - ванадий в ильмените, магнезите, глинозёме; масс-спектрометрическим - марганец в лунном реголите; нейтронно-активационным - железо, цинк, сурьму, серебро, кобальт, селен и скандий в нефти; методом изотопного разбавления - кобальт в силикатных породах.

Физические и физико-химические методы иногда называют инструментальными, т. к. в этих методах требуется применение специально приспособленных для проведения основных этапов анализа и регистрации его результатов инструментов (аппаратуры).

Физико-химические методы анализа могут включать химические превращения определяемого соединения, растворение образца, концентрирование анализируемого компонента, маскирование мешающих веществ и других. В отличие от «классических» химических методов анализа, где аналитическим сигналом служит масса вещества или его объем, в физико-химические методы анализа в качестве аналитического сигнала используют интенсивность излучения, силу тока, электропроводность, разность потенциалов.

Важное практическое значение имеют методы, основанные на исследовании испускания и поглощения электромагнитного излучения в различных областях спектра. К ним относится спектроскопия (например, люминесцентный анализ, спектральный анализ, нефелометрия и турбидиметрия и другие). К важным физико-химическим методам анализа принадлежат электрохимические методы, использующие измерение электрических свойств вещества (кулонометрия, потенциометрия и т. д.), а также хроматография (например, газовая хроматография, жидкостная хроматография, ионообменная хроматография, тонкослойная хроматография). Успешно развиваются методы, основанные на измерении скоростей химических реакций (кинетические методы анализа), тепловых эффектов реакций (термометрическое титрование), а также на разделении ионов в магнитном поле (масс-спектрометрия).

План лекции:

1. Общая характеристика физико-химических методов

2. Общие сведения о спектроскопических методах анализа.

3. Фотометрический метод анализа: фотоколориметрия, колориметрия, спектрофотометрия.

4. Общие сведения о нефелометрическом, люминесцентном, поляриметрическом методах анализа.

5. Рефрактометрический метод анализа.

6. Общие сведения о масс-спектральном, радиометрическом анализах.

7. Электрохимические методы анализа (потенциометрия, кондуктометрия, кулонометрия, амперометрия, полярография).

8. Хроматографический метод анализа.

Сущность физико-химических методов анализа. Их классификация.

Физико-химические методы анализа, как и химичес­кие методы, основаны на проведении той или иной хими­ческой реакции. В физических методах химические реак­ции отсутствуют или имеют второстепенное значение, хо­тя в спектральном анализе интенсивность линий всегда существенно зависит от химических реакций в угольном электроде или в газовом пламени. Поэтому иногда физи­ческие методы включают в группу физико-химических методов, так как достаточно строгого однозначного разли­чия между физическими и физико-химическими метода­ми нет, и выделение физических методов в отдельную группу не имеет принципиального значения.

Химические методы анализа были не в состоянии удов­летворить многообразные запросы практики, возросшие в результате научно-технического прогресса, развития полу­проводниковой промышленности, электроники и ЭВМ, ши­рокого применения чистых и сверхчистых веществ в техни­ке.

Применение физико-химических методов анализа на­шло свое отражение в технохимическом контроле пищевых производств, в научно-исследовательских и производственных лабораториях. Эти методы характеризуются высокой чувствительностью и быстрым выполнением анализа. Они основаны на использовании физико-химических свойств веществ.

При выполнении анализов физико-химическими методами точку эквивалентности (конец реакции) определяют не визуально, а при помощи приборов, которые фиксируют изменение физических свойств исследуемого вещества в точке эквивалентности. Для этой цели обычно применяют приборы с относительно сложными оптическими или электрическими схемами, поэтому эти методы получили название методов инструментального анализа.

Во многих случаях для выполнения анализа этими методами не требуется химическая реакция в отличие от химических методов анализа. Надо только измерить показатели каких-либо физических свойств анализируемого вещества: электропроводность, светопоглощение, светопреломление и др. Физико-химические методы позволяют вести в промышленности непрерывный контроль сырья, полуфабрикатов и готовых изделий.

Физико-химические методы анализа стали применять позднее, чем химические методы анализа, когда была установлена и изучена связь между физическими свойствами веществ и их составом.

Точность физико-химических методов сильно колеблет­ся в зависимости от метода. Наиболее высокой точностью (до 0,001%) обладает кулонометрия, основанная на изме­рении количества электричества, которое затрачивается на электрохимическое окисление или восстановление опреде­ляемых ионов или элементов. Большинство физико-хими­ческих методов имеют погрешность в пределах 2-5 %, что превышает погрешность химических методов анализа. Од­нако такое сравнение погрешностей не вполне корректно, так как оно относится к разным концентрационным облас­тям. При небольшом содержании определяемого компонен­та (около 10 -3 % и менее) классические химические методы анализа вообще непригодны; при больших концентрациях физико-химические методы успешно соперничают с хими­ческими. К числу существенных недостатков большинства физико-химических методов относится обязательное нали­чие эталонов и стандартных растворов.

Среди физико-химических методов наибольшее прак­тическое применение имеют:

1. спектральные и другие опти­ческие методы (рефрактометрия, поляриметрия);

2. электрохимические методы анализа;

3. хроматографические методы анализа.

Кроме этого выделяют еще 2 группы физико-химических методов:

1. радиометрические методы, основанные на измерении радиоактивного излучения данного элемента;

2. масс-спектрометрические методы анализа, основанные на определении масс отдельных ионизированных атомов, молекул и радикалов.

Наиболее обширной по числу методов и важной по практическому значению является группа спектральных и других оптических методов. Эти методы основаны на взаимодействии веществ с электромагнитным излучени­ем. Известно много различных видов электромагнитных излучений: рентгеновское излучение, ультрафио­летовое, видимое, инфракрасное, микроволновое и радио­частотное. В зависимости от типа взаимодействия элект­ромагнитного излучения с веществом оптические методы классифицируются следующим образом.

На измерении эффектов поляризации молекул вещест­ва основаны рефрактометрия, поляриметрия.

Анализируемые вещества могут поглощать электромаг­нитное излучение и на основе использования этого явления выделяют группу абсорбционных оптических методов.

Поглощение света атомами анализируемых веществ используется в атомно-абсорбционном анализе . Способ­ность поглощать свет молекулами и ионами в ультрафио­летовой, видимой и инфракрасной областях спектра поз­волила создать молекулярно-абсорбционный анализ (ко­лориметрию, фотоколориметрию, спектрофотометрию).

Поглощение и рассеяние света взвешенными частица­ми в растворе (суспензии) привело к появлению методов турбидиметрии и нефелометрии .

Методы, основанные на измерении интенсивности из­лучения, возникающего в результате выделения энергии возбужденными молекулами и атомами анализируемого вещества, называются эмиссионными методами . К молекулярно-эмиссионным методам относят люминесценцию (флуоресценцию), к атомно-эмиссионным - эмиссионный спектральный анализ и пламенную фотометрию.

Электрохимические методы анализа основаны на изме­рении электрической проводимости (кондуктометрия ); разности потенциалов (потенциометрия ); количества элект­ричества, прошедшего через раствор (кулонометрия ); за­висимости величины тока от приложенного потенциала (вольт-амперометрия).

В группу хроматографических методов анализа входят методы газовой и газожидкостной хроматографии, рас­пределительной, тонкослойной, адсорбционной, ионооб­менной и других видов хроматографии.

Спектроскопические методы анализа: общие сведения

Понятие о спектроскопическом методе анализа, его разновидности

Спектроскопические методы анализа - физические методы, основанные на взаимодействии электромагнит­ного излучения с веществом. Взаимодействие приводит к различным энергетическим переходам, которые регис­трируют инструментально в виде поглощения излучения, отражения и рассеяния электромагнитного излучения.

Классификация:

Эмиссионный спектральный анализ основан на изуче­нии спектров испускания (излучения) или эмиссионных спектров различных веществ. Разновидностью этого анализа является фотометрия пламени, основанная на измерении интенсивности излучения атомов, возбуж­даемого нагреванием вещества в пламени.

Абсорбционный спектральный анализ основан на изу­чении спектров поглощения анализируемых веществ. Если происходит поглощение излучения атомами, то абсорбция называется атомной, а если молекулами, то - молекулярной. Различают несколько видов аб­сорбционного спектрального анализа:

1. Спектрофотометрия - учитывает поглощение ана­лизируемым веществом света с определенной дли­ной волны, т.е. поглощение монохроматического из­лучения.

2. Фотометрия – основана на измерении по­глощения анализируемым веществом света не строго монохроматического излучения.

3. Колориметрия основана на измерении поглоще­ния света окрашенными растворами в видимой час­ти спектра.

4. Нефелометрия основана на измерении интенсив­ности света, рассеянного твердыми частицами, взве­шенными в растворе, т.е. света, рассеянного суспен­зией.

Люминесцентная спектроскопия использует свечение исследуемого объекта, возникающее под действием ультрафиолетовых лучей.

В зависимости от того, в какой части спектра про­исходит поглощение или излучение, различают спект­роскопию в ультрафиолетовой, видимой и инфракрас­ной областях спектра.

Спектроскопия - чувствительный метод определения более 60 элементов. Его применяют для анализа много­численных материалов, включая биологические среды, вещества растительного происхождения, цементы, стек­ла и природные воды.

Фотометрические методы анализа

Фотометрические методы анализа основаны на избира­тельном поглощении света анализируемым веществом или его соединением с подходящим реагентом. Интенсив­ность поглощения можно измерять любым способом, неза­висимо от характера окрашенного соединения. Точность метода зависит от способа измерения. Различают колори­метрический, фотоколориметрический и спектрофотометрический методы.

Фотоколориметрический метод анализа.

Фотоколориметрический метод анализа позволяет количест­венно определить интенсивность поглощения света анали­зируемым раствором с помощью фотоэлектроколориметров (иногда их называют просто фотоколориметрами). Для этого готовят серию стандартных растворов и вычер­чивают зависимость светопоглощения определяемого ве­щества от его концентрации. Эта зависимость называется градуировочным графиком. В фотоколориметрах свето­вые потоки, проходящие через раствор, имеют широкую область поглощения - 30-50 нм, поэтому свет здесь явля­ется полихроматическим. Это приводит к потере воспро­изводимости, точности и избирательности анализа. Достоинства фотоколориметра заключается в простоте конструкции и высокой чувствительности благодаря большой светосиле источника излучения – лампы накаливания.

Колориметрический метод анализа.

Колориметрический метод анализа основан на измерении поглощения света веществом. При этом сравнивают интенсивность окраски, т.е. оптическую плотность, исследуемого раствора с окраской (оптической плотностью) стандартного раствора, концентрация которого известна. Метод весьма чувствителен и применяется для определения микро- и полумикроколичеств.

Для проведения анализа колориметрическим методом требуется значительно меньше времени, чем химическим путем.

При визуальном анализе добиваются равенства интенсивности окрашивания анализируемого и окрашиваемого раствора. Этого можно достигнуть 2 путями:

1. уравнивают окраску, изменяя толщину слоя;

2. подбирают стандартные растворы разных концентраций (метод стандартных серий).

Однако визуально невозможно установить количествен­но, во сколько раз один раствор окрашен интенсивнее дру­гого. В этом случае можно установить только одинаковую окраску анализируемого раствора при сравнении его со стандартным.

Основной закон поглощения света.

Если световой поток, интенсивность которого I 0 , направить на раствор, находящийся в плоском стеклянном сосуде (кювете), то одна часть его интенсивностью I r , отражается от поверхности кюветы, другая часть интенсивностью I а поглощается раствором и третья часть интенсивностью I t проходит через раствор. Между этими величинами имеется зависимость:

I 0 = I r + I а + I t (1)

Т.к. интенсивность I r отраженной части светового потока при работе с одинаковыми кюветами постоянна и незначительна, то в расчетах ею можно пренебречь. Тогда равенство (1) принимает вид:

I 0 = I а + I t (2)

Это равенство характеризует оптические свойства раствора, т.е. его способность поглощать ил пропускать свет.

Интенсивность поглощенного света зависит от числа окрашенных частиц в растворе, которые поглощают свет больше, чем растворитель.

Световой поток, проходя через раствор, теряет часть интенсивности – тем большую, чем больше концентрация и толщина слоя раствора. Для окрашенных растворов существует зависимость, называемая законом Бугера – Ламберта – Бера (между степенью поглощения света, интенсивностью падающего света, концентрацией окрашенного вещества и толщиной слоя).

По этому закону, поглощение монохроматографического света, прошедшего через слой окрашенной жидкости, пропорционально концентрации и толщине слоя его:

I = I 0 ·10 - kCh ,

где I – интенсивность светового потока, прошедшего через раствор; I 0 – интенсивность падающего света; С – концентрация, моль/л ; h – толщина слоя, см ; k – мольный коэффициент поглощения.

Мольный коэффициент поглощения k – оптическая плотность раствора, содержащего 1 моль/л поглощающего вещества, при толщине слоя 1 см. Он зависит от химической природы и физического состояния поглощающего свет вещества и от длины волны монохроматического света.

Метод стандартных серий.

Метод стандартных серий основан на получении одинаковой интенсивности окраски исследуемого и стандартного растворов при одинаковой толщине слоя. Окраску исследуемого раствора сравнивают с окраской ряда стандартных растворов. При одинаковой интенсивности окраски концентрации исследуемого и стандартного растворов равны.

Для приготовления серии стандартных растворов берут 11 пробирок одинаковой формы, размера и из одинакового стекла. Наливают из бюретки стандартный раствор в постепенно возрастающем количестве, например: в 1 пробирку 0,5 мл , во 2ую 1 мл , в 3ю 1,5 мл , и т.д. – до 5 мл (в каждую следующую пробирку на 0,5 мл больше, чем в предыдущую). Во все пробирки наливают равные объемы раствора, который дает с определяемым ионом цветную реакцию. Растворы разбавляют так, чтобы уровни жидкости во всех пробирках были одинаковы. Пробирки закрывают пробками, тщательно перемешивают содержимое и размещают в штативе по возрастающим концентрациям. Таким образом получают цветную шкалу.

К исследуемому раствору в одинаковой пробирке прибавляют столько же реактива, разбавляют водой до того же объема, как и в других пробирках. Закрывают пробкой, тщательно перемешивают содержимое. Окраску исследуемого раствора сравнивают с окраской стандартных растворов на белом фоне. Растворы должны быть хорошо освещены рассеянным светом. Если интенсивность окраски исследуемого раствора совпадает с интенсивностью окраски одного из растворов цветной шкалы, то концентрации этого и исследуемого растворов равны. Если же интенсивность окраски исследуемого раствора промежуточная между интенсивностью двух соседних растворов шкалы, то его концентрация равна средней концентрации этих растворов.

Применение метода стандартных растворов целесообразно только при массовом определении какого-нибудь вещества. Заготовленная серия стандартных растворов служит относительно короткое время.

Метод уравнивания интенсивности окраски растворов.

Метод уравнивания интенсивности окраски исследуемого и стандартного растворов производится путем изменения высоты слоя одного из растворов. Для этого в 2 одинаковых сосуда помещают окрашенные растворы: исследуемый и стандартный. Изменяют высоту слоя раствора в одном из сосудов до тех пор, пока интенсивность окраски в обоих растворах не станет одинаковой. В этом случае определяют концентрацию исследуемого раствора С иссл. , сравнивая ее с концентрацией стандартного раствора:

С иссл. = С ст ·h ст / h иссл,

где h ст и h иссл – высота слоя соответственно стандартного и исследуемого раствора.

Приборы, служащие для определения концентраций исследуемых растворов методом уравнивания интенсивности окраски, называются колориметрами.

Различают визуальные и фотоэлектрические колориметры. При визуальных колориметрических определениях интенсивность окраски измеряют непосредственным наблюдением. Фотоэлектрические методы основаны на использовании фотоэлементов-фотоколориметров. В зависимости от интенсивности падающего пучка света в фотоэлементе возникает электрический ток. Сила тока, вызванная воздействием света, измеряется гальванометром. Отклонение стрелки показывает интенсивность окраски.

Спектрофотометрия.

Фотометрический метод основан на измерении по­глощения анализируемым веществом света не строго монохроматического излучения.

Если в фотометрическом методе анализа использовать монохроматическое излучение (излучение одной длины волны), то такой способ называют спектрофотометрией . Степень монохроматичности потока электромагнитного излучения определяют минимальным интервалом длин волн, который выделяется используемым монохроматором (светофильтром, дифракционной решеткой или призмой) из сплошного потока электромагнитного излучения.

К спектрофотометрии относят также область изме­рительной техники, объединяющую спектрометрию, фотометрию и метрологию и занимающуюся разработкой системы методов и приборов для количественных изме­рений спектральных коэффициентов поглощения, отраже­ния, излучения, спектральной яркости как характеристик сред, покрытий, поверхностей, излучателей.

Стадии спектрофотометрического исследования:

1) проведение химической реакции для получения систем, удобных для проведения спектрофотометричес­кого анализа;

2) измерения поглощения полученных растворов.

Сущность метода спектрофотометрии

Зависимость поглощения раствора вещества от дли­ны волны на графике изображается в виде спектра погло­щения вещества, на котором легко выделить максимум поглощения находящийся при длине волны света, максимально поглощаемой веществом. Измерение опти­ческой плотности растворов веществ на спектрофотомет­рах проводят при длине волны максимума поглощения. Это позволяет анализировать в одном растворе веще­ства, максимумы поглощения которых расположены при разных длинах волн.

В спектрофотометрии в ультрафиолетовой и видимой областях используют электронные спектры поглощения.

Они характеризуют наиболее высокие энергетические пере­ходы, к которым способен ограниченный круг соединений и функциональных групп. В неорганических соединениях электронные спектры связаны с высокой поляризацией ато­мов, входящих в молекулу вещества, и обычно появляются у комплексных соединений. У органических соединений возникновение электронных спектров вызывается перехо­дом электронов с основного на возбужденные уровни.

На положение и интенсивность полос поглощения силь­но влияет ионизация. При ионизации по кислотному типу в молекуле появляется дополнительная неподеленная пара электронов, что приводит к дополнительному батох-ромному сдвигу (сдвигу в длинноволновую область спект­ра) и повышению интенсивности полосы поглощения.

В спектре многих веществ имеется несколько полос поглощения.

Для спектрофотометрических измерений в ультрафи­олетовой и видимой областях применяется два типа при­боров - нерегистрирующие (результат наблюдают на шкале прибора визуально) и регистрирующие спектро­фотометры.

Люминесцентный метод анализа.

Люминесценция - способность к самостоятельному свечению, возникающему под различными воздействиями.

Классификация процессов, вызывающих люми­несценцию:

1)фотолюминесценция (возбуждение видимым или ультрафиолетовым светом);

2)хемилюминесценция (возбуждение за счет энергии химических реакций);

3)катодолюминесценция (возбуждение электронным ударом);

4)термолюминесценция (возбуждение нагреванием);

5)триболюминесценция (возбуждение механическим воздействием).

В химическом анализе имеют значение первые два вида люминесценции.

Классификация люминесценции по наличию пос­лесвечения . Оно может прекращаться сразу при исчез­новении возбуждения - флюоресценция или продол­жаться определенное время после прекращения возбуж­дающего воздействия - фосфоресценция . В основном используют явление флюоресценции, поэтому метод на­зван флюориметрией .

Применение флюориметрии : анализ следов метал­лов, органических (ароматических) соединений, витами­нов D, В 6 . Флюоресцентные индикаторы применяют при титровании в мутных или темно-окрашенных средах (титрование ведут в темноте, освещая титруемый ра­створ, куда добавлен индикатор, светом люминесцент­ной лампы).

Нефелометрический анализ.

Нефелометрия предложена Ф. Кобером в 1912 г. и основана на измерении интенсивности света, рассеянно­го суспензией частиц, с помощью фо­тоэлементов.

С помощью нефелометрии измеряют концентрацию веществ, нерастворимых в воде, но образующих стойкие суспензии.

Для проведения нефелометрических измерений при­меняются нефелометры , аналогичные по принципу коло­риметрам, с той лишь разницей, что при нефелометрии

При проведении фотонефелометрическогоанализа сначала по результатам определения серии стандартных растворов строят калибровочный график, затем проводят анализ исследуемого раствора и по графику определяют концентрацию анализируемого вещества. Для стабилиза­ции получаемых суспензий добавляют защитный колло­ид - раствор крахмала, желатина и др.

Поляриметрический анализ.

Электромагнитные колебания естественного света происходят во всех плоскостях, перпендикулярных к направлению луча. Кристаллическая решетка обладает способностью пропускать лучи только определенного направления. По выходе из кристалла колебания луча совершаются только в одной плоскости. Луч, колебания которого находятся в одной плоскости, называется поляризованным . Плоскость, в которой происходят колебания, называется плоскостью колебания поляризованного луча, а плоскость, перпендикулярная к ней, - плоскость поляризации .

Поляриметрический метод анализа основан на изучении поляризованного света.

Рефрактометрический метод анализа.

В основе рефрактометрического метода анализа лежит определение показателя преломления исследуемого вещества, т.к. индивидуальное вещество характеризуется определенным показателем преломления.

Технические продукты всегда содержат примеси, которые влияют на величину показателя преломления. Поэтому показатель преломления может в ряде случаев служить характеристикой чистоты продукта. Например, сорта очищенного скипидара различают по показателям преломления. Так, показатели преломления скипидара при 20° для желтого цвета, обозначенные через n 20 D (запись означает, что показатель преломления измерен при 20°С, длина волны падающего света равна 598 ммк), равны:

Первый сорт Второй сорт Третий сорт

1,469 – 1,472 1,472 – 1,476 1,476 – 1,480

Рефрактометрический метод анализа можно применять для двойных систем, например для определения концентрации вещества на водном или органическом растворах. В этом случае анализ основан на зависимости показателя преломления раствора от концентрации растворенного вещества.

Для некоторых растворов имеются таблицы зависимости показателей преломления от их концентрации. В других случаях анализируют методом калибровочной кривой: готовят серию растворов известных концентраций, измеряют их показатели преломления и строят график зависимости показателей преломления от концентрации, т.е. строят калибровочную кривую. По ней определяют концентрацию исследуемого раствора.

Показатель преломления.

При переходе луча света из одной среды в другую его направление меняется. Он преломляется. Показатель преломления равен отношению синуса угла падения к синусу угла преломления (эта величина постоянная и характерная для данной среды):

n = sin α / sin β,

где α и β – углы между направлением лучей и перпендикуляром к поверхности раздела обеих сред (рис. 1)


Показатель преломления – отношение скоростей света в воздухе и в исследуемой среде (если луч света падает из воздуха).

Показатель преломления зависит от:

1. длины волны падающего света (с увеличением длины волны показатель

преломления уменьшается);

2. температуры (с увеличением температуры показатель преломления уменьшается);

3. давления (для газов).

При обозначении показателя преломления указывают длины волны падающего света и температуру измерения. Например, запись n 20 D означает, что показатель преломления измерен при 20°С, длина волны падающего света равна 598 ммк. В технических справочниках показатели преломления приведены при n 20 D .

Определение показателя преломления жидкости.

Перед началом работы поверхность призм рефрактометра промывают дистиллированной водой и спиртом, проверяют правильность установления нулевой точки прибора и приступают к определению показателя преломления исследуемой жидкости. Для этого поверхность измерительной призмы осторожно протирают ваткой, смоченной исследуемой жидкостью, и наносят на эту поверхность несколько ее капель. Призмы закрывают и, вращая их, наводят границу светотени на крест нитей окуляра. Компенсатором устраняют спектр. При отсчете показателя преломления три десятичных знака берут по шкале рефрактометра, а четвертый – на глаз. Затем сдвигают границу светотени, снова совмещают ее с центром визирного креста и делают повторный отсчет. Т.о. производят 3 или 5 отсчетов, после чего промывают и вытирают рабочие поверхности призм. Исследуемое вещество снова наносят на поверхность измерительной призмы и проводят вторую серию измерений. Из полученных данных берут среднее арифметическое значение.

Радиометрический анализ.

Радиометрический анализ основан на измерении излучений радиоактивных элементов и применяется для количественного определения радиоактивных изотопов в исследуемом материале. При этом измеряют либо ес­тественную радиоактивность определяемого элемента, либо искусственную радиоактивность, получаемую с по­мощью радиоактивных изотопов.

Радиоактивные изотопы идентифицируют по перио­ду их полураспада или по виду и энергии испускаемого излучения. В практике количественного анализа чаще всего измеряют активность радиоактивных изотопов по их α-, β- и γ-излучению.

Применение радиометрического анализа:

Изучение механизма химических реакций.

Методом меченых атомов исследуют эффективность различных приемов внесения удобрений в почву, пути проникновения в организм микроэлементов, нанесен­ных на листья растения, и т.п. Особенно широко ис­пользуют в агрохимических исследованиях радиоактив­ные фосфор 32 Р и азот 13 N.

Анализ радиоактивных изотопов, используемых для лечения онкологических заболеваний и для определе­ния гормонов, ферментов.

Масс-спектральный анализ.

Основан на определении масс отдельных ионизированных атомов, молекул и радикалов в результате комбинированного действия электрического и магнитных полей. Регистрацию разделенных частиц проводят электрическим (масс-спектрометрия) или фотографическим (масс-спектрография) способами. Определение проводят на приборах – масс-спектрометрах или масс-спектрографах.

Электрохимические методы анализа.

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, про­текающих на поверхности электрода или в приэлектродном пространстве. Аналитический сигнал - электричес­кий параметр (потенциал, сила тока, сопротивление), ко­торый зависит от концентрации определяемого вещества.

Различают прямые и косвенныеэлектрохимические методы . В прямых методах используют зависимость силы тока от концентрации определяемого компонента. В косвенных - силу тока (потенциал) измеряют для на­хождения конечной точки титрования (точки эквивалент­ности) определяемого компонента титрантом.

К электрохимическим методам анализа относят:

1. потенциометрию;

2. кондуктометрию;

3. кулонометрию;

4. амперометрию;

5. полярографию.

Электроды, используемые в электрохимических методах.

1.Электрод сравнения и индикаторный электрод.

Электрод сравнения - это электрод с постоянным потенциалом, нечувствительный к ионам раствора. Элек­трод сравнения имеет устойчивый во времени воспроиз­водимый потенциал, не меняющийся при прохождении небольшого тока, и относительно его ведут отчет потен­циала индикаторного электрода. Используют хлорсеребряный и каломельный электроды. Хлорсеребряный элек­трод - серебряная проволока, покрытая слоем AgCI и помещенная в раствор KCI. Потенциал электрода опре­деляется концентрацией иона хлора в растворе:

Каломельный электрод состоит из металлической рту­ти, каломели и раствора KCI. Потенциал электрода зави­сит от концентрации хлорид-ионов и температуры.

Индикаторный электрод - это реагирующий на кон­центрацию определяемых ионов электрод. Индикаторный электрод изменяет свой потенциал с изменением концен­трации «потенциалопределяющих ионов». Индикаторные электроды делят на необратимые и обратимые . Скачки потенциала обратимых индикаторных электродов на меж­фазных границах зависят от активности участников элек­тродных реакций в соответствии с термодинамическими уравнениями; равновесие устанавливается достаточно быстро. Необратимые индикаторные электроды не удов­летворяют требованиям обратимых. В аналитической химии применяются обратимые электроды, для которых выполняется уравнение Нернста.

2. Металлические электроды: электронообменные и ионообменные.

Уэлектронообменного электрода на межфазной гра­нице протекает реакция с участием электронов. Электро­нообменные электроды делят на электроды первого рода и электроды второго рода . Электроды первого рода - металлическая пластина (серебро, ртуть, кадмий), погру­женная в раствор хорошо растворимой соли этого метал­ла. Электроды второго рода - металл, покрытый слоем малорастворимого соединения этого металла и погружен­ный в раствор хорошо растворимого соединения с тем же анионом (хлорсеребряный, каломельный электроды).

Ионообменные электроды - электроды, потенциал которых зависит от отношения концентраций окисленной и восстановленной форм одного или нескольких веществ в растворе. Такие электроды делаются из инертных ме­таллов, например из платины или золота.

3. Мембранные электроды представляют собой пори­стую пластинку, пропитанную жидкостью, не смешиваю­щейся с водой и способной к избирательной адсорбции определенных ионов (например, растворы хелатов Ni 2+ , Cd 2+ , Fe 2+ в органическом растворе). Работа мембранных электродов основана на возникновении разности потен­циалов на границе раздела фаз и установлении равновесия обмена между мембраной и раствором.

Потенциометрический метод анализа.

Потенциометрический метод анализа основан на измерении потенциала электрода, погруженного в раствор. При потенциометрических измерениях составляют галь­ванический элемент с индикаторным электродом и элек­тродом сравнения и измеряют электродвижущую силу (ЭДС).

Разновидности потенциометрии:

Прямая потенциометрия применяется для непосред­ственного определения концентрации по значению потен­циала индикаторного электрода при условии обратимос­ти электродного процесса.

Косвенная потенциометрия основана на том, что изменение концентрации иона сопровождается изменени­ем потенциала на электроде, погруженном в титруемый раствор.

В потенциометрическом титровании обнаруживают конечную точку по скачку потенциала, обусловленную заменой электрохимической реакции на другую в соответ­ствии со значениями Е° (стандартный электродный потенциал).

Значение по­тенциала зависит от концентрации соответствующих ионов в рас­творе. Например, потенциал серебряного электрода, погруженного в раствор соли серебра, изменяется с изменением концентрации Ag + -ионов в растворе. Поэтому, измерив потенциал электрода, погруженного в раствор данной соли неизвестной концентрации, можно определить содержание соответствующих ионов в растворе.

Электрод, по потенциалу которого судят о концентрации опре­деляемых ионов в растворе, называют индикаторным электродом.

Потенциал индикаторного электрода определяют, сравнивая его с потенциалом другого электрода, который принято называть электродом сравнения. В качестве электрода сравнения может быть применен только такой электрод, потенциал которого остает­ся неизменной при изменении концентрации определяемых ионов. В качестве электрода сравнения применяют стандартный (нор­мальный) водородный электрод.

На практике часто в качестве электрода сравнения с извест­ным значением электродного потенциала пользуются не водород­ным, а каломельным электродом (рис. 1). Потенциал каломель­ного электрода с насыщенным раствором КО при 20 °С равен 0,2490 В.

Кондуктометрический метод анализа.

Кондуктометрический ме­тод анализа основан на измерении электропроводности растворов, изменяющейся в результате химических реакций.

Электропроводность раствора зависит от природы электролита, его температуры и концентрации растворенного вещества. Элек­тропроводность разбавленных растворов обусловлена движением катионов и анионов, отличающихся различной подвижностью.

С повышением температуры электропроводность увеличивает­ся, так как увеличивается подвижность ионов. При данной темпе­ратуре электропроводность раствора электролита зависит от его концентрации: как правило, чем выше концентрация, тем больше электропроводность! Следовательно, электропроводность данного раствора служит показателем концентрации растворенного ве­щества и обусловливается подвижностью ионов.

В простейшем случае кондуктометрического количественного определения, когда в растворе содержится только один электро­лит, строят график зависимости электропроводности раствора ана­лизируемого вещества от его концентрации. Определив электро­проводность исследуемого раствора, по графику находят концент­рацию анализируемого вещества.

Так, электропроводность баритовой воды изменяется прямо пропорционально содержанию в растворе Ва(ОН) 2 . Эта зависи­мость графически выражается прямой линией. Чтобы определить содержание Ва(ОН) 2 в баритовой воде неизвестной концентрации, надо определить ее электропроводность и по калибровочному гра­фику найти концентрацию Ва(ОН)2, соответствующую этому зна­чению электропроводности. Если через раствор Ва(ОН) 2 , электро­проводность которого известна, пропустить измеренный объем га­за, содержащего диоксид углерода, то С0 2 реагирует с Ва(ОН) 2:

Ва(ОН) 2 + С0 2 ВаС0 3 + Н 2 0

В результате этой реакции содержание Ва(ОН) 2 в растворе уменьшится и электропроводность баритовой воды понизится. Из­мерив электропроводность баритовой воды после поглощения ею С0 2 , можно определить, насколько понизилась концентрация Ва(ОН) 2 в растворе. По разности концентраций Ва(ОН) 2 в бари­товой воде легко рассчитать количество поглощенной

АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Издательство ТГТУ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" М.И. ЛЕБЕДЕВА АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Лекции к курсу Тамбов Издательство ТГТУ 2005 УДК 543(075) ББК Г4я73-4 Л33 Рецензенты: Доктор химических наук, профессор А.Б. Килимник Кандидат химических наук, доцент кафедры неорганической и физической химии ТГУ им. Г.Р. Державина А.И. Рягузов Лебедева, М.И. Л33 Аналитическая химия и физико-химические методы анализа: учеб. пособие / М.И. Лебедева. Там- бов: Изд-во Тамб. гос. техн. ун-та, 2005. 216 с. Рассмотрены основные вопросы курса «Аналитическая химия и физико-химические методы ана- лиза». После изложения теоретического материала в каждой главе даны содержательные блоки по про- верке знаний с помощью тестовых заданий и приведен рейтинг оценки знаний. В третьем разделе каж- дой главы приведены решения наиболее сложных задач и их оценка в баллах. Предназначены для студентов нехимических специальностей (200401, 200402, 240202, 240802, 240902) и составлены в соответствии со стандартами и учебными программами. УДК 543(075) ББК Г4я73-4 ISBN 5-8265-0372-6 © Лебедева М.И., 2005 © Тамбовский государственный технический университет (ТГТУ), 2005 Учебное издание ЛЕБЕДЕВА Мария Ивановна АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Лекции к курсу Редактор В.Н. Митрофанова Компьютерное макетирование Д.А. Лопуховой Подписано в печать 21.05.2005 Формат 60 × 84 / 16. Бумага офсетная. Печать офсетная Гарнитура Times New Roman. Объем: 12,55 усл. печ. л.; 12,50 уч.-изд. л. Тираж 200 экз. С. 571М Издательско-полиграфический центр Тамбовского государственного технического университета, 392000, Тамбов, Советская, 106, к. 14 ПРЕДИСЛОВИЕ Без анализа нет синтеза Ф. Энгельс Аналитическая химия – наука о способах идентификации химических соединений, о принципах и методах определения химического состава веществ и их структуры. Особую актуальность аналитическая химия приобрела в настоящее время, поскольку основным фактором неблагоприятного антропогенного воздействия на природу являются химические загрязнения. Определение их концентрации в различных природных объектах становится важнейшей задачей. Зна- ния основ аналитической химии одинаково необходимо современному студенту, инженеру, преподава- телю, предпринимателю. Ограниченное количество учебников и учебных пособий по курсу «Аналитическая химия и физико- химические методы анализа» для студентов химического профиля и полное их отсутствие для специ- альностей «Стандартизация и сертификация», «Пищевая биотехнология», «Инженерная защита окру- жающей среды», а также мой многолетний опыт преподавания этой дисциплины в ТГТУ привели к не- обходимости составления и издания предлагаемого курса лекций. Предлагаемое издание состоит из одиннадцати глав, в каждой из которых выделены наиболее важ- ные теоретические вопросы, отражающие последовательность изложения материала в лекционном кур- се. I – V главы посвящены химическим (классическим) методам анализа, в VIII – X рассмотрены основ- ные физико-химические методы анализа, а XI глава посвящена органическим аналитическим реагентам. Изучение каждого раздела рекомендуется завершать решением соответствующего содержательного блока, расположенного в конце главы. Блоки заданий сформулированы в трех специальных формах. Теоретические задания с выбором ответов (тип А). К каждому теоретическому вопроса такого типа предлагаются по четыре привлекательных варианта ответов, только один из которых является верным. За любое правильно решенное задание типа А студент получает один балл. Задачи с выбором ответов (тип B)1 оцениваются в два балла. Они несложные и решаются практиче- ски в одно или несколько действий. Верный ответ выбирается из четырех предлагаемых вариантов. Задания с развернутым ответом (тип С)2 предлагают студенту записать ответ в развернутой форме и в зависимости от полноты решения и его правильности могут оцениваться от одного до пяти баллов. Максимальное количество баллов дается за полностью решенное задание и указывается в последней строке рейтинговой таблицы. Суммарное количество баллов, набранные по той или иной теме, являются показателем знаний сту- дента, уровень которых можно оценить в предлагаемой рейтинговой системе. Набранное количество баллов Оценка 32 – 40 Отлично 25 – 31 Хорошо 16 – 24 Удовлетворительно Меньше 16 Неудовлетворительно Автор выражает благодарность студентам Авсеевой А., Бусиной М., Зобниной Е., Кацуба Л., Поля- ковой Н., Тишкиной Э. (гр. ПБ-21), Поповой С. (гр. З-31), принимавшим активное участие в оформлении работы. 1 В некоторых главах могут отсутствовать 2 В некоторых главах могут отсутствовать «Аналитическая химия чутко реагирует на за- просы производства и черпает для себя в этом силу и импульсы для дальнейшего рос- та.» Н.С. Курнаков 1 АНАЛИТИЧЕСКАЯ ХИМИЯ КАК НАУКА. ОСНОВНЫЕ ПОНЯТИЯ В решении крупнейших общечеловеческих проблем (проблема сырья, продовольствия, атомной энергетики, космонавтики, полупроводниковой и лазерной техники) ведущее место принадлежит ана- литической химии. Основой экологического мониторинга является совокупность различных химических наук, каждая из которых нуждается в результатах химического анализа, поскольку химическое загрязнение – основ- ной фактор неблагоприятного антропогенного воздействия на природу. Целью аналитической химии становится определение концентрации загрязняющих веществ в различных природных объектах. Ими являются природные и сточные воды различного состава, донные отложения, атмосферные осадки, воз- дух, почвы, биологические объекты и т.д. Широкое внедрение высокоэффективных мер контроля над состоянием окружающей природной среды, не ликвидируя болезнь в корне, очень важно для диагностики. Эффект в этом случае может быть получен намного быстрее и с наименьшими затратами. Система контроля дает возможность вовремя обнаружить вредные примеси и локализовать источ- ник загрязнения. Вот почему роль аналитической химии в охране окружающей среды приобретает все большее значение. Аналитическая химия – это наука о способах идентификации химических соединений, о принци- пах и методах определения химического состава веществ и их структуры. Она является научной осно- вой химического анализа. Химический анализ – это получение опытным путем данных о составе и свойствах объектов. Впервые это понятие научно обосновал Р. Бойль в книге «Химик-скептик» (1661 г.) и ввел термин «ана- лиз». Аналитическая химия базируется на знаниях, полученных при изучении курсов неорганической, ор- ганической, физической химии, физики и математики. Цель изучения аналитической химии – освоение современных методов анализа веществ и их при- менение для решения народно-хозяйственных задач. Тщательный и постоянный контроль производства и объектов окружающей среды основан на достижениях аналитической химии. В. Оствальд писал: «Аналитическая химия, или искусство распознавать вещества или их составные части, занимает среди приложений научной химии особое место, так как вопросы, на которые она дает возможность ответить, возникают всегда при попытке воспроизвести химические процессы для науч- ных или технических целей. Благодаря такому своему значению аналитическая химия с давних пор встречает постоянную заботу о себе…». 1.1 Краткая история развития аналитической химии История развития аналитической химии неотделима от истории развития химии и химической про- мышленности. Отдельные приемы и методы химического анализа были известны с глубокой древности (распознавание веществ по цвету, запаху, вкусу, твердости). В IX – X вв. на Руси пользовались так на- зываемым «пробирным анализом» (определение чистоты золота, серебра и руд). Так, сохранились запи- си Петра I о выполнении им «пробирного анализа» руд. При этом качественный анализ (определение качественного состава) всегда предшествовал количественному анализу (определение количественно- го соотношения компонентов). Основоположником качественного анализа считают английского ученого Роберта Бойля, кото- рый впервые описал методы обнаружения SO 2 − – и Cl − – ионов с помощью Ba 2 + – и Ag + – ионов, а также 4 применил органические красители в качестве индикаторов (лакмус). Однако аналитическая химия нача- ла формироваться в науку после открытия М.В. Ломоносовым закона сохранения веса веществ при хи- мических реакциях и применения весов в химической практике. Таким образом, М.В. Ломоносов – ос- новоположник количественного анализа. Современник Ломоносова академик Т.Е. Ловиц установил взаимосвязь между формой кристаллов и их химическим составом: «микрокристаллоскопический анализ». Первые классические работы по хи- мическому анализу принадлежат академику В.М. Севергину, опубликовавшему «Руководство по испы- танию минеральных вод». В 1844 г. профессор Казанского университета К.К. Клаус, анализируя «сы- рую платину», обнаружил новый элемент – рутений. Переломным этапом в развитии аналитической химии, в становлении ее как науки было открытие периодического закона Д.И. Менделеевым (1869 г.). Труды Д.И. Менделеева составили теоретический фундамент методов аналитической химии и определили основное направление ее развития. В 1871 г. вышло первое руководство по качественному и количественному анализу Н.А. Меншут- кина «Аналитическая химия». Аналитическая химия создавалась трудами ученых многих стран. Неоце- нимый вклад в развитие аналитической химии внесли русские ученые: А.П. Виноградов, Н.А. Тананаев, И.П. Алимарин, Ю.А. Золотов, А.П. Крешков, Л.А. Чугаев, М.С. Цвет, Е.А. Божевольнов, В.И. Кузне- цов, С.Б. Саввин и др. Развитие аналитической химии в первые годы Советской власти проходило в трех основных на- правлениях: – помощь предприятиям в выполнении анализов; – разработка новых методов анализа природных и промышленных объектов; – получение химических реактивов и препаратов. В годы ВОВ аналитическая химия выполняла оборонные задания. Длительное время в аналитической химии господствовали так называемые «классические» методы анализа. Анализ рассматривался как «искусство» и резко зависел от «рук» экспериментатора. Техниче- ский прогресс требовал более быстрых, простых методов анализа. В настоящее время большинство мас- совых химических анализов выполняется с помощью полуавтоматических и автоматических приборов. При этом цена оборудования окупается его высокой эффективностью. В настоящее время необходимо применять мощные, информативные и чувствительные методы ана- лиза, чтобы контролировать концентрации загрязнителей, меньшие ПДК. В самом деле, что означает нормативное «отсутствие компонента»? Может быть, его концентрация настолько мала, что традицион- ным способом ее не удается определить, но сделать это все равно нужно. Действительно, охрана окру- жающей среды – вызов аналитической химии. Принципиально важно, чтобы предел обнаружения загрязняющих веществ аналитическими методами был не ниже 0,5 ПДК. 1.2 ТЕХНИЧЕСКИЙ АНАЛИЗ На всех стадиях любого производства осуществляется технический контроль – т.е. проводятся ра- боты по контролю качества продукции в ходе технологического процесса с целью предотвращения брака и обеспечения выпуска продукции, соответствующей ТУ и ГОСТам. Технический анализ делится на общий – анализ веществ, встречающийся на всех предприятиях (Н2О, топливо, смазочные материалы) и специальный – анализ веществ, встречающихся только на данном предприятии (сырье, полупродукты, отходы производства, конечный продукт). С этой целью ежедневно тысячи химиков-аналитиков выполняют миллионы анализов, согласно со- ответствующим Международным ГОСТам. Методика анализа – подробное описание выполнения аналитических реакций с указанием условий их выполнения. Ее задачей является овладение навыками эксперимента и сущностью аналитических ре- акций. Методы аналитической химии основаны на различных принципах. 1.3 КЛАССИФИКАЦИЯ МЕТОДОВ АНАЛИЗА 1 По объектам анализа: неорганический и органический. 2 По цели: качественный и количественный. Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом объекте. Методы качественного и количественного анализа, позволяющие определить в анализируемом ве- ществе содержание отдельных элементов, называют элементным анализом; функциональных групп – функциональным анализом; индивидуальных химических соединений, характеризующихся опреде- ленной молекулярной массой, – молекулярным анализом. Совокупность разнообразных химических, физических и физико-химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом. 3 По способу выполнения: химические, физические и физико-химические (инструментальные) методы. 4 По массе пробы: макро– (>> 0,10г), полумикро– (0,10 – 0,01г), микро– (0.01 – 10 −6 г), ультрамик- роанализ (< 10 −6 г). 1.4 АНАЛИТИЧЕСКИЕ РЕАКЦИИ 1.4.1 Способы выполнения аналитических реакций В основе аналитических методов – получение и измерение аналитического сигнала, т.е. любое проявление химических и физических свойств вещества в результате протекания химической реакции. Аналитические реакции можно проводить «сухим» и «мокрым» путем. Примеры реакций, проводимых «сухим» путем: реакции окрашивания пламени (Na + – желтый; Sr 2+ – красный; Ba 2+ – зеленый; K + – фиолетовый; Tl 3+ – зеленый, In + – синий и др.); при сплавлении Na 2 B 4 O 7 и Co 2+ , Na 2 B 4 O 7 и Ni 2+ , Na 2 B 4 O 7 и Cr 3+ образуются «перлы» буры различной окраски. Чаще всего аналитические реакции проводят в растворах. Анализируемый объект (индивидуальное вещество или смесь веществ) может находиться в любом агрегатном состоянии (твердом, жидком, газо- образном). Объект для анализа называется образцом, или пробой. Один и тот же элемент в образце мо- жет находиться в различных химических формах. Например: S 0 , S 2− , SO 2 − , SO 3 - и т.д. В зависимости от 4 2 цели и задачи анализа после переведения в раствор пробы проводят элементный анализ (определение общего содержания серы) или фазовый анализ (определение содержания серы в каждой фазе или в ее отдельных химических формах). Выполняя ту или иную аналитическую реакцию необходимо строго соблюдать определенные усло- вия ее протекания (температура, рН раствора, концентрация) с тем, чтобы она протекала быстро и имела достаточно низкий предел обнаружения. 1.4.2 Классификация аналитических реакций 1 Групповые реакции: один и тот же реактив реагирует с группой ионов, давая одинаковый сиг- нал. Так, для отделения группы ионов (Ag + , Pb 2+ , Hg 2+) используют реакцию их с Cl − – ионами, при этом 2 образуются белые осадки (AgCl, PbCl 2 , Hg 2 Cl 2). 2 Избирательные (селективные) реакции. Пример: йодокрахмальная реакция. Впервые ее описал в 1815 г. немецкий химик Ф. Штромейер. Для этих целей используют органические реагенты. Пример: диметилглиоксим + Ni 2+ → образование ало − красного осадка диметилглиоксимата никеля. Изменяя условия протекания аналитической реакции, можно неизбирательные реакции сделать из- бирательными. Пример: если реакции Ag + , Pb 2 + , Hg 2 + + Cl − проводить при нагревании, то PbCl 2 не осаждается, так как он 2 хорошо растворим в горячей воде. 3 Реакции комплексообразования используются для целей маскирования мешающих ионов. Пример: для обнаружения Со 2+ в присутствии Fe 3+ – ионов с помощью KSCN , реакцию проводят в присутствии F − – ионов. При этом Fe 3+ + 4F − → − , K н = 10 −16 , поэтому Fe 3+ – ионы закомплексованы и не мешают определению Co 2+ – ионов. 1.4.3 Реакции, используемые в аналитической химии 1 Гидролиз (по катиону, по аниону, по катиону и аниону) Al 3+ + HOH ↔ Al(OH) 2+ + H + ; CO 3 − + HOH ↔ HCO 3 + OH − ; 2 − Fe 3+ + (NH 4) 2 S + HOH → Fe(OH) 3 + ... 2 Реакции окисления–восстановления + 2MnSO 4 + 5K 2 S 2 O 8 + 8H 2 O Ag → 2HMnO 4 + 10KHSO 4 + 2H 2 SO 4  3 Реакции комплексообразования СuSO 4 + 4 NH 4 OH → SO 4 + 4H 2 O 4 Реакции осаждения Ba 2+ + SO 2− →↓ BaSO 4 4 1.4.4 Сигналы методов качественного анализа 1 Образование или растворение осадка Hg 2+ + 2I − →↓ HgI 2 ; красный HgI 2 + 2KI − → K 2 бесцветный 2 Появление, изменение, исчезновение окраски раствора (цветные реакции) Mn 2 + → − MnO 4 → MnO 2 − 4 бесцветный фиолетовый зеленый 3 Выделение газа SO 3 − + 2H + → SO 2 + H 2 O. 2 4 Реакции образования кристаллов строго определенной формы (микрокристаллоскопические ре- акции). 5 Реакции окрашивания пламени. 1.5 Аналитическая классификация катионов и анионов Для катионов существуют две классификации: кислотно-основная и сероводородная. Сероводо- родная классификация катионов представлена в табл. 1.1. 1.1 Сероводородная классификация катионов Аналитическая Аналитическая Катионы Групповой реагент группа форма І K + , Na + , NH + , Mg 2 + 4   (NH 4) 2 CO 3 + NH 4 OH + NH 4 Cl II Ba 2 + , Sr 2 + , Ca 2 + MeCO3 ↓ pH ~ 9 Al3 + , Cr 3 + (NH 4) 2 S + NH 4 OH + NH 4 Cl Me(OH)m ↓ III Zn 2 + , Mn 2 + , Ni 2 + , Co 2 + , Fe 2 + , Fe3 + pH ~ 9 MeS ↓ Cu 2 + , Cd 2 + , Bi 3 + , Sn 2 + , Sn 4 + H 2S → HCl, IV MeS ↓ Hg 2 + , As3 + , As5 + , Sb 3 + , Sb 5 + pH ~ 0,5 V Ag + , Pb 2 + , 2 + HCl MeCl m ↓ Все анионы делятся на две группы: 1 Групповой реагент – BaCl 2 ; при этом образуются растворимые соли бария: − − − Cl , Br , I , NO 3 , CH 3 COO − , SCN − , − , 4− 3− 2 − ClO − , ClO − , ClO 3 , ClO − . − , BrO3 4 2 Анионы образуют малорастворимые соли бария, которые растворимы в уксусной, соляной и азотной кислотах (за исключением BaSO 4): F − , CO 3 − , SO 2− , SO 3 − , S 2 O 3 − , SiO 3 − , CrO 2− , PO 3− . 2 4 2 2 2 4 4 1.5.1 Схема анализа по идентификации неизвестного вещества 1 Окраска сухого вещества: черная: FeS, PbS, Ag 2 S, HgS, NiS, CoS, CuО, MnO 2 и др; оранжевая: Cr2 O 7− и др; 2 желтая: CrO 2− , HgO, CdS ; 4 красная: Fe(SCN) 3 , Co 2+ ; синяя: Cu 2+ . 2 Окраска пламени. 3 Проверка на наличие кристаллизационной воды. 4 Действие кислот на сухую соль (газ). 5 Подбор растворителя (при комнатной температуре, при нагревании): H 2 O, CH 3 COOH, HCl, H 2 SO 4 , «царская водка», сплавление с Na 2CO3 и последующее выщелачивание. Следует помнить, что практи- чески все нитраты, все соли калия, натрия и аммония растворимы в воде. 6 Контроль pH раствора (только для растворимых в воде объектов). 7 Предварительные испытания (Fe 2+ , Fe 3+ , NH +). 4 8 Обнаружение группы катионов, анионов. 9 Обнаружение катиона. 10 Обнаружение аниона. 1.6 Методы разделения и концентрирования Разделение – это операция (процесс), в результате которого компоненты, составляющие исходную смесь, отделяются один от другого. Концентрирование – операция (процесс), в результате которого повышается отношение концен- трации или количества микрокомпонентов к концентрации или количеству макрокомпонентов. Необходимость разделения и концентрирования может быть обусловлена следующими факторами: – проба содержит компоненты, мешающие определению; – концентрация определяемого компонента ниже предела обнаружения метода; – определяемые компоненты неравномерно распределены в пробе; – отсутствуют стандартные образцы для градуировки приборов; – проба высокотоксична, радиоактивна или дорога. Большинство методов разделения основано на распределении вещества между двумя фазами: I – водной и II – органической. Например, для вещества А имеет место равновесие A I ↔ A II . Тогда отношение концентрации вещества А в органической фазе к концентрации вещества в водной фазе называется константой распределения K D KD = [A]II [A]I Если обе фазы – растворы, насыщенные относительно твердой фазы, и экстрагируемое вещество существует в единственной форме, то при равновесии константа распределения равна S II KD = , (1.1) SI где S I , S II – растворимости вещества в водной и органической фазах. Абсолютно полное извлечение, а, следовательно, и разделение теоретически неосуществимы. Эф- фективность извлечения вещества А из одной фазы в другую можно охарактеризовать двумя фактора- ми: полнотой извлечения Rn и степенью отделения примесей Rc . x y Rn = ; Rc = , (1.2) x0 y0 где x и x0 – содержание извлекаемого вещества и содержание его в исходном образце; y и y0 – конечное и исходное содержание примеси. Чем меньше Rc и чем больше Rn , тем совершеннее разделение.

error: