Sp3 гибридное состояние атома углерода. Типы гибридизации s- и p- электронных облаков. Пространственная конфигурация молекул. Типы гибридизации атомных орбиталей

1) sp – или q 2 – гибридизация характерна, когда в образовании связи участвует 1 s и 1 p- электрон.


Рис. 16. Схема sp – гибридизации

Молекула имеет линейное строение типа AB 2 .

2) sp 2 – или q 3 – гибридизация. Гибридные облака располагаются под углом 120 0 в одной плоскости (рис. 17).

При образовании гибридного облака участвует один s и


2 p электрона.

Рис. 17. Схема sp 2 - гибридизации

Например, молекула BCl 3

Молекула имеет форму плоского треугольника.

3) sp 3 – q 4 – гибридизация осуществляется за счет одного s и трех p – электронных облаков. Облака при этом типе гибридизации располагаются пол углом 109 0 28 ¢ (рис. 18). 4 гибридных облака направлены из центра правильного тетраэдра к его вершинам. Примером такой молекулы может быть CH 4, CCl 4 .

Рис. 18. Схема sp 3 – гибридизации

Кроме рассмотренных возможны и другие типы гибридизации валентных орбиталей и отвечающие им типы пространственной конфигурации молекул. Комбинация одной s – трех p – и одной d – орбиталей приводит к sp 3 d – гибридизации. Это соответствует ориентации пяти sp 3 d – гибридных орбиталей к вершинам тригональной бипирамиды. В случае sp 3 d 2 – гибридизации шесть sp 3 d 2 гибридных орбиталей ориентируются к вершинам октаэдра. Ориентация семи орбиталей к вершинам пентагональной бипирамиды соответствует sp 3 d 3 (или sp 3 d 2 f ) – гибридизации валентных орбиталей центрального атома молекулы.

Таким образом, направленность химических связей определяет пространственную конфигурацию молекул.

Рассмотрим еще возможные типы возникающих молекул.

Молекулы типа AA или AB. К этому типу относятся молекулы, образованные двумя одинаковыми или различными атомами, между которыми возникает одна одинарная (s - сигма) связь, последняя может быть образована за счет взаимодействия двух s – электронов, по одному от каждого атома (s¢ - s¢ ), двух p – электронов (p¢ - p¢ ) или двух электронов смешанного типа (s¢ - p¢ ) (рис. 19). Такие связи возникают между атомами элементов, имеющих один s – или p – электрон: водород, элементы группы IA (щелочные металлы) и группы VIIA (галогены). Молекулы этого типа имеют линейную форму, например,
H 2 , F 2 , Cl 2 , Br 2 , J 2 , Zi 2 , Na 2 , K 2 , HCl и др.

Рис. 19. Перекрывание s- и p- орбиталей

с образованием s - связи

Молекулы типа AB 2, AB 3 . Они образуются за счет взаимодействия двух p – электронов атома В и s – электронов двух атомов A . Два непарных p- электрона характерны для атомов элементов VI А группы, т.е. для кислорода и его аналогов (халькогенов).



Электронные облака p- электронов располагаются относительно друг другу под углом 90 0 по координатным осям x и y.

Рис. 20. Перекрывание орбиталей в молекуле воды

Например, в молекуле H 2 O (рис. 20) перекрывание облаков s – электронов с облаками p – электронов происходит в месте, обозначенном штриховкой, а потому химические связи должны быть направлены под углом 90 º . Такие молекулы называются угловыми. Однако согласно экспериментальным данным значительного чаще встречаются молекулы с иным значением валентного угла. Например, у молекулы воды валентный угол составляет 104,5º. одной из причин этого явления, согласно теории валентных связей является наличие у центрального атома несвязывающих электронных пар. Искажение валентных углов в этом случае вызывается взаимным отталкиванием связывающих и несвязывающих электронных пар центрального атома. При этом следует учесть, что облако связывающей электронной пары (локализованной между двумя атомами) занимает меньше места, чем облако несвязывающей электронной пары, поэтому в наибольшей степени отталкивание проявляется между несвязывающими парами, несколько меньше эффект отталкивания между несвязывающей и связывающей парой и, наконец, меньшее отталкивание между связывающими электронными парами. Это видно на примере строения молекул метана, аммиака и воды. Центральные атомы этих молекул образуют химические связи за счет электронов s p 3 - гибридные орбитали приходится четыре электрона

Это определяет образование четырех связей C – H и расположение атомов водорода молекулы метана CH 4 в вершинах тетраэдра (рис. 21)

Рис. 21. Перекрывание орбиталей в молекуле метана




У атома азота на четыре sp 3 - гибридных орбитали приходится пять электронов:

Следовательно, одна пара электронов оказывается несвязывающей и занимает одну из sp 3 – орбиталей, направленных к вершинам тетраэдра. Вследствие отталкивающего действия несвязывающей электронной пары валентный угол в молекуле аммиака H 3 N оказывается меньше тетраэдрического и составляет < HNH = 107,3º .

Теперь уже ясно, что при рассмотрении молекулы воды угол валентный должен быть еще меньше, т.е. у атома кислорода на 4 sp 3 – гибридные орбитали приходится шесть электронов т.е. две sp 3 – гибридные орбитали занимают несвязывающие электронные пары. Отталкивающие действия двух

несвязывающих пар проявляется в большей степени. Поэтому валентный угол искажается против тетраэдрического еще сильнее и в молекуле воды H 2 O составляет < HOH = 104º,5¢ . С увеличением числа несвязывающих электронов центрального атома изменяется и пространственная конфигурация молекул (табл. 7). Так, если молекула имеет форму правильного тетраэдра с атомом углерода в центре, то в случае молекулы H 3 N можно считать, что одна из вершин тетраэдра занята несвязывающей электронной парой и молекула имеет форму тригональной пирамиды. В молекуле H 2 O две вершины тетраэдра заняты электронными парами, а сама молекула имеет угловую V- образную форму.


тетраэдр тригональная угловая

тип АВ 4 пирамида тип АВ 2 (А 2 В)

СН 4 тип АВ 3 NH 3 H 2 O

Полярности связи. Связь между атомами разных электронов всегда более или менее полярна. Это обусловливается различием размеров и электроотрицательностей атомов. Например, в молекуле хлорида водорода HCl связывающее электронное облако смещено в сторону более электроотрицательного атома хлора. Вследствие этого заряд ядра водорода уже не компенсируется, а на атоме хлора электронная плотность становится избыточной по сравнению с зарядом ядра.

Таблица 7

Пространственная конфигурация молекул ABn

Тип гибри-диза-ции Число электронных пар атома A Тип моле-кулы Пространст-венная конфигу- рация Примеры
Связыва-ющих Несвязывающих
sp AB 2 линейная BeCl 2 (г) CO 2
sp 2 AB 3 AB 2 треугольная угловая BCl 3 , CO O 3
sp 3 AB 4 тетраэдрическая CCl 4 , BH ,NH
AB 3 AB 2 тригональнопермидальная угловая H 3 N, H 3 P H 2 O
sp 3 d 1 AB 5 тригонально-бипирамидальная PF 5 , SbCl 5

Иными словами, атом водорода в HCl поляризован положительно, а атом хлора отрицательно; на атоме водорода возникает положительный заряд, а на атоме хлора – отрицательный. Этот заряд d - называют эффективным, его можно установить экспериментально. Согласно имеющимся данным, эф-

фективный заряд на атоме водорода молекулы HCl составляет d H = +0,2 , а на атоме хлора d Cl = -0,2 абсолютного заряда электрона.

Таким образом, по степени смещения (поляризации) связующего электронного облака связь может быть неполярной, полярной или ионной. Неполярная и ионная связи представляют собой крайние случаи полярной связи.

Неполярные и полярные молекулы. В неполярных молекулах центры тяжести положительных и отрицательных зарядов совпадают. Полярные молекулы являются диполями, т.е. системами, состоящими из двух равных по величине и противоположных по знаку зарядов (+q и –q ), находящихся на некотором расстоянии l друг от друга, которое называется длинной диполя. Полярность молекулы, как и полярность связи оценивают величиной ее дипольного момента обозначаемого m

m = l· q,

где l – длина диполя, q – величина электрического заряда.

l имеет значение порядка диаметра атома, т.е. 10 -8 см , а заряд электрона 4,8∙10 -10 эл. ст. ед., поэтому m выражается величиной порядка 10 -18 эл. ст. ед.∙см. Эту величину называют единицей Дебая и образуют буквой D . В системе единиц СИ m измеряется в кулон - метрах (К∙м); 1 D = 0,33∙10 -29 К∙м.

Значения дипольного момента ковалентных молекул лежат в пределах 0-4 D , ионных 4-11 D .

Дипольный момент молекулы представляет собой векторную сумму дипольных моментов всех связей и несвязанных электронных пар в молекуле. Результат сложения зависит от структуры молекулы. Например, молекула CO 2 , за счет sp гибридизации орбиталей атома углерода, имеет симметрическое линейное строение.


(m = 1,84 D или 0,61∙10 -29 К∙М)

Отсутствие дипольного момента свидетельствует о высоко симметричной структуре молекулы, наличие дипольного момента и его величина определяют несимметричность молекулы.

Поляризуемость связи. Для характеристики реакционной способности молекул важно знать не только исходное распределение электронной плотности, но и легкость, с которой оно изменится. Мерой последней служит поляризуемость связи – ее способность становиться полярной (или более полярной) в результате действия на нее электрического поля.

В результате поляризации может произойти полный разрыв связи с переходом связывающей электронной пары к одному из атомов с образованием отрицательного и положительного ионов. Асимметричный разрыв связи с образованием разноименных ионов называется гетеролитическим.


гомолитический гетеролитический

разрыв разрыв

(диссоциация) (ионизация)

Гетеролитический разрыв отличается от разрушения связи при распаде молекулы на атомы и радикалы. В последнем случае разрушается связывающая электронная пара и процесс называется гомолитическим. В соответствии со сказанным следует различать процесс диссоциации и процесс ионизации; в случае HCl первый наблюдается при его термическом распаде на атомы, второй – при распаде на ионы в растворе.

Под действием внешнего электрического поля молекула поляризуется, т.е. в ней происходит перераспределение зарядов и молекула приобретает новое значение дипольного момента. При этом неполярные молекулы могут превратиться в полярные, а полярные становятся еще более полярными. Иначе говоря, под действием внешнего электрического поля в молекулах индуцируется диполь, называемый наведенным или индуцированным, которые существуют лишь при действии внешнего электрического поля.

Чаще всего встречаются гибридизации sp, sp 2 , sp 3 и sp 3 d 2 . Каждому типу гибридизации соответствует определенное пространственное строение молекул вещества.

sp-Гибридизация . Этот тип гибридизации наблюдается при образовании атомом двух связей за счет электронов, находящихся на s-орбитали и на одной p-орбитали (одного и того же энергетического уровня). При этом образуются две гибридные q-орбитали, направленные в противоположные стороны под углом 180 º (рис. 22).

Рис. 22. Схема sp-гибридизации

При sp-гибридизации образуются линейные трехатомные молекулы типа АВ 2 , где А – центральный атом, у которого происходит гибридизация, а В – присоединенные атомы, у которых гибридизация не происходит. Такие молекулы образуются атомами бериллия, магния, а также атомами углерода в ацетилене (С 2 Н 2) и в углекислом газе (СО 2).

Пример 5. Объясните химическую связь в молекулах ВеН 2 и ВеF 2 и строение этих молекул.

Решение. Атомы бериллия в нормальном состоянии не образуют химических связей, т.к. не имеют неспаренных электронов (2s 2). В возбужденном состоянии (2s 1 2p 1) электроны находятся на разных орбиталях, поэтому при образовании связей происходит sp-гибридизация по схеме, приведенной на рис. 22. К двум гибридным орбиталям присоединяются два атома водорода или фтора, как показано на рис. 23.

1) 2)

Рис. 23. Схема образования молекул ВеН 2 (1) и ВеF 2 (2)

Образующиеся молекулы – линейные, валентный угол 180º.

Пример 6. По экспериментальным данным молекула СО 2 – линейная, причём, обе связи углерода с кислородом одинаковы по длине (0,116 нм) и энергии (800 кДж/моль). Как объясняются эти данные?

Решение . Эти данные о молекуле диоксида углерода объясняет следующая модель ее образования.

Атом углерода образует связи в возбужденном состоянии, при котором он имеет четыре неспаренных электрона: 2s 1 2p 3 . При образовании связей происходит sp-гибридизация орбиталей. Гибридные орбитали направлены по прямой линии в противоположные стороны от ядра атома, а оставшиеся две чистые (негибридные) p-орбитали располагаются перпендикулярно друг к другу и к гибридным орбиталям. Все орбитали (гибридные и негибридные) содержат по одному неспаренному электрону.

Каждый атом кислорода, имеющий два неспаренных электрона на двух взаимно перпендикулярных p-орбиталях, присоединяется к атому углерода s-связью и p-связью: s-связь образуется с участием гибридной орбитали углерода, а p-связь образуется перекрыванием чистых p-орбиталей атомов углерода и кислорода. Образование связей в молекуле СО 2 показано на рис. 24.

Рис. 24. Схема образования молекулы СО 2

Кратность связи, равная двум, объясняет большую прочность связи, а sp-гибридизация – линейное строение молекулы.

Смешивание одной s- и двух p-орбиталей называется sp 2 -гибридизацией . При этой гибридизации получаются три равноценные q-орбитали, расположенные в одной плоскости под углом 120º (рис. 25).

Рис. 25. Схема sp 2 -гибридизации

Образующиеся при этой гибридизации молекулы типа АВ 3 имеют форму плоского правильного треугольника с атомами А в центре и атомами В в его вершинах. Такая гибридизация происходит в атомах бора и других элементов третьей группы и в атомах углерода в молекуле С 2 Н 4 и в ионе СО 3 2- .

Пример 7. Объясните образование химических связей в молекуле ВН 3 и ее строение.

Решение. Экспериментальные исследования свидетельствуют о том, что в молекуле ВН 3 все три связи В–Н расположены в одной плоскости, углы между связями равны 120º. Это строение молекулы объясняется тем, что в атоме бора в возбужденном состоянии смешиваются валентные орбитали, заселённые неспаренными электронами (2s 1 2p 2) и он образует связи sp 2 -гибридными орбиталями. Схема молекулы ВН 3 приведена на рис. 26.

Рис. 26. Схема образования молекулы ВН 3

Если в гибридизации участвуют одна s- и три p-орбитали (sp 3 -гибридизация ), то в результате образуются четыре гибридные орбитали, направленне к вершинам тетраэдра, т.е. ориентированные под углами 109º28 ¢ (~109,5º) друг к другу. Образующиеся молекулы имеют тетраэдрическое строение. Гибридизацией этого типа объясняется строение предельных углеводородов, соединений углерода с галогенами, многих соединений кремния, катиона аммония NH 4 + и др. Классическим примером этой гибридизации является молекула метана CH 4 (рис. 27)

Рис. 27. Схема образования химических связей в молекуле СН 4

Если в гибридизации участвуют одна s-, три p- и две d-орбитали (sp 3 d 2 - гибридизация ), то возникают шесть гибридных орбиталей, напрвленных к вершинам октаэдра, т.е. ориентированных под углами 90º друг к другу. Образующиеся молекулы имеют октаэдрическое строение. Гибридизацией этого типа объясняется строение соединений серы, селена и теллура с галогенами, например SF 6 и SeF 6 , и многих комплексных ионов: 2– , 3– и т.д. На рис. 28 показано образование молекулы гексафторида серы.

Рис. 28. Схема молекулы SF 6

Химические связи с участием гибридных орбиталей отличаются большой прочностью. Если энергию s-связи, образованную «чистыми» s-орбиталями, принять за единицу, то энергия связи при sp-гибридизации будет равна 1,43, при sp 2 -гибридизации 1,99, при sp 3 -гибридизации 2,00, а при sp 3 d 2 -гибридизации 2,92. Увеличение прочности связей объясняется более полным перекрыванием гибридных орбиталей с негибридными при образовании химической связи.

Кроме рассмотренных типов гибридизации, в химических соединениях встречаются гибридизации sp 2 d, sp 3 d, sp 3 d 3 , sp 3 d 3 и другие. При sp 2 d-гибридизации молекулы и ионы имеют квадратную форму, при sp 3 d-гибридизации – форму тригональной бипирамиды и при sp 3 d 3 -гибридизации – пентагональной бипирамиды. Другие типы гибридизации встречаются редко.

Пример 8. Приведены уравнения двух похожих реакций:

1) CF 4 + 2HF = H 2 CF 6 ; 2) SiF 4 + 2HF = H 2 SiF 6

Какая из них невозможна с точки зрения образования химических связей?

Решение. Для образования H 2 CF 6 необходима sp 3 d 2 -гибридизация, но в атоме углерода валентные электроны находятся на втором энергетическом уровне, на котором нет d-орбиталей. Поэтому первая реакция в принципе невозможна. Вторая реакция возможна, так как sp 3 d 2 -гибридизация у кремния возможна.

Многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.

Энциклопедичный YouTube

    1 / 3

    ✪ Гибридизация электронных орбиталей

    ✪ Цитология. Лекция 46. Гибридизация орбиталей

    ✪ Гибридизация. Полярные и неполярные молекулы. Самоподготовка к ЕГЭ и ЦТ по химии

    Субтитры

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода . В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи - Найхолма, первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состояло в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуются две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра центрального атома. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -Гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуются три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -Гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp 3 -гибридные орбитали.

Оси sp 3 -гибридных орбиталей направлены к вершинам тетраэдра , тогда как ядро центрального атома расположено в центре описанной сферы этого тетраэдра. Угол между любыми двумя осями приближённо равен 109°28" , что соответствует наименьшей энергии отталкивания электронов. Также sp 3 -орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов. Такое состояние характерно для атомов углерода в насыщенных углеводородах и соответственно в алкильных радикалах и их производных.

Гибридизация и геометрия молекул

Представление о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизации Число
гибридных орбиталей
Геометрия Структура Примеры
sp 2 Линейная

BeF 2 , CO 2 , NO 2 +

sp 2 3 Треугольная

BF 3 , NO 3 - , CO 3 2-

sp 3 , d 3 s 4 Тетраэдрическая

CH 4 , ClO 4 - , SO 4 2- , NH 4 +

dsp 2 4 Плоскоквадратная (2-) 2-
sp 3 d 5 Гексаэдрическая

sp3-гибридизация

sp 3 -Гибридизация - гибридизация, в которой участвуют атомные орбитали одного s - и трех p -электронов (рис. 1).

Рис. 1. Образование sp 3 -гибридных орбиталей

Четыре sp 3 -гибридные орбитали симметрично ориентированны в пространстве под углом 109°28" (рис. 2).

Модель атома с sp 3 -гибридными орбиталями

Пространственная конфигурация молекулы, центральный атом которой образован sp 3 -гибридными орбиталями - тетраэдр

Тетраэдрическая пространственная конфигурация молекулы, центральный атом которой образован sp 3 -гибридными орбиталями

гибридизация атом орбиталь углерод

Примеры соединений, для которых характерна sp 3 -гибридизация: NH 3 , POCl 3 , SO 2 F 2 , SOBr 2 , NH 4+ , H 3 O + . Также, sp 3 -гибридизация наблюдается во всех предельных углеводородах (алканы, циклоалканы) и других органческих соединениях: CH 4 , C 5 H 12 , C 6 H 14 , C 8 H 18 и др. Общая формула алканов: C n H 2n+2 . Общая формула циклоалканов: C n H 2n . В предельных углеводородах все химические связи одинарные, поэтому между гибридными орбиталями этих соединений возможно только у -перекрывание.

Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.

Атомная орбиталь - это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако - это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.

Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Напомним, что в электронной формуле атома (например, для углерода 6 С - 1s 2 2s 2 2p 2) большие цифры перед буквами - 1, 2 - обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s -орбитали сферические

На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

Форма и ориентация р-электронных орбиталей

При образовании химических связей электронные орбитали приобретают одинаковую форму. Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) 3 -орбиталей:

Это - 3 -гибридизация.

Гибридизация - выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Четыре sp 3 -гибридные орбитали атома углерода

Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех 3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).

Соответственно углы между этими орбиталями - тетраэдрические, равные 109°28".

Вершины электронных орбиталей могут перекрываться с орбиталями других атомов. Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма () - связью . Например, в молекуле этана С 2 Н 6 химическая связь образуется между двумя атомами углерода перекрыванием двух гибридных орбиталей. Это -связь. Кроме того, каждый из атомов углерода своими тремя 3 -орбиталями перекрывается с s -орбиталями трех атомов водорода, образуя три -связи.

Схема перекрывания электронных облаков в молекуле этана

Всего для атома углерода возможны три валентных состояния с различным типом гибридизации. Кроме 3 -гибридизации существует 2 - и -гибридизация.

2 -Гибридизация - смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные 2 -орбитали. Эти 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°. Негибридизованная р -орбиталь перпендикулярна к плоскости трех гибридных 2 -орбиталей (ориентирована вдоль осиz ). Верхняя половина р -орбитали находится над плоскостью, нижняя половина - под плоскостью.

Тип 2 -гибридизации углерода бывает у соединений с двойной связью: С=С, С=О, С=N. Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.) Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Орбитали (три sp 2 и одна р) атома углерода в sp 2 -гибридизации

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи()-связью .

Образование -связи

Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь.

-Гибридизация - это смешивание (выравнивание по форме и энергии) одной s- и одной р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно направлениям -связей. На рисунке -орбитали показаны вдоль оси y , а негибридизованные две р -орбитали- вдоль осей х и z .

Атомные орбитали (две sp и две р) углерода в состоянии sp-гибридизации

Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании sp -гибридных орбиталей, и двух -связей.

Электронное строение атома углерода

Углерод, входящий в состав органических соединений проявляет постоянную валентность. На последнем энергетическом уровне атома углерода содержится 4 электрона, два из которых занимают 2s- орбиталь, имеющую сферическую форму, а два электрона занимают 2р-орбитали, имеющие гантелеподобную форму. При возбуждении один электрон из 2s-орбитали может переходить на одну из вакантных 2р-орбиталей. Этот переход требует некоторых энергетических затрат (403 кДж/моль). В результате возбужденный атом углерода имеет 4 неспаренных электрона и его электронная конфигурация выражается формулой 2s1 2p3 .

Атом углерода в возбужденном состоянии способен образовывать 4 ковалентных связи за счет 4 собственных неспаренных электронов и 4 электронов других атомов. Так, в случае углеводорода метана (СН4) атом углерода образует 4 связи с s-электронами атомов водорода. При этом должны были бы образовываться 1 связь типа s-s (между s-электроном атома углерода и s-электроном атома водорода) и 3 p-s-связи (между 3 р-электронами атома углерода и 3 s-электронами 3-х атомов водорода). Отсюда вытекает вывод о неравноценности четырех ковалентных связей, образуемых атомом углерода. Однако, практический опыт химии свидетельствует о том, что все 4 связи в молекуле метана абсолютно равноценны, а молекула метана имеет тетраэдрическое строение с валентными углами 109°, чего не могло бы быть при неравноценности связей. Ведь только орбитали р-электронов ориентированы в пространстве по взаимноперпендикулярным осям x, y, z, а орбиталь s-электрона имеет сферическую форму, поэтому направление образования связи с этим электроном было бы произвольным. Объяснить это противоречие смогла теория гибридизации. Л.Поллинг высказал предположение, что в любых молекулах не существует изолированных друг от друга связей. При образовании связей орбитали всех валентных электронов перекрываются. Известно несколько типов гибридизации электронных орбиталей. Предполагается, что в молекуле метана и других алканов в гибридизацию вступает 4 электрона.

Гибридизация орбиталей атома углерода

Гибридизация орбиталей - это изменение формы и энергии некоторых электронов при образовании ковалентной связи, приводящее к более эффективному перекрыванию орбиталей и повышению прочности связей. Гибридизация орбиталей происходит всегда, когда в образовании связей участвуют электроны, принадлежащие к различным типам орбиталей. 1. sp 3 -гибридизация (первое валентное состояние углерода). При sp3 -гибридизации 3 р- орбитали и одна s-орбиталь возбужденного атома углерода взаимодействуют таким образом, что получаются орбитали абсолютно одинаковые по энергии и симметрично расположенные в пространстве. Это преобразование можно записать так:

s + px+ py + pz = 4sp3

При гибридизации общее число орбиталей не изменяется, а изменяется только их энергия и форма. Показано, что sр3 -гибридизация орбитали напоминают объемную восьмерку, одна из лопастей которой значительно больше другой. Четыре гибридных орбитали вытянуты от центра к вершинам правильного тетраэдра под углами 109,50 . Связи образованные гибридными электронами (например связь s-sp 3) более прочные, чем связи, осуществляемые негибридизованными р-электронами (например, связь-s-p). поскольку гибридная sp3 -орбиталь обеспечивает большую площадь перекрывания электронных орбиталей, чем негибридизованная р-орбиталь. Молекулы, в которых осуществляется sp3 - гибридизация имеют тетраэдрическое строение. К ним, кроме метана, относятся гомологи метана, неорганические молекулы типа аммиака. На рисунках показана гибридизованная орбиталь и тетраэдрическая молекула метана. Химические связи, возникающие в метане между атомами углерода и водорода относятся к типу 2 у-связей (sp3 -s-связь). Вообще говоря любая сигма-связь характеризуется тем, что электронная плотность двух связанных между собой атомов, перекрывается по линии, соединяющей центры (ядра) атомов. у-Связи отвечают максимально возможной степени перекрывания атомных орбиталей, поэтому они достаточно прочны. 2. sp2 -гибридизация (второе валентное состояние углерода). Возникает в результате перекрывания одной 2s и двух 2р орбиталей. Образовавшиеся sp2 -гибридные орбитали располагаются в одной плоскости под углом 1200 друг к другу, а негибридизованная р-орбиталь перпендикулярно к ней. Общее число орбиталей не меняется - их четыре.

s + px + py + pz = 3sp2 + pz

Состояние sp2 -гибридизации встречается в молекулах алкенов, в карбонильной и карбоксильной группах, т.е. у соединений, имеющих в своем составе двойную связь. Так, в молекуле этилена гибридизованные электроны атома углерода образуют 3 у-связи (две связи типа sp 2 -s между атомом углерода и атомами водорода и одна связь типа sp 2 -sp 2 между атомами углерода). Оставшийся негибридизованным р-электрон одного атома углерода образует р-связь с негибридизованным р-электроном второго атома углерода. Характерной особенностью р-связи является то, что перекрывание орбиталей электронов идет вне линии, соединяющей два атома. Перекрывание орбиталей идет выше и ниже у-связи, соединющей оба атома углерода. Таким образом двойная связь является комбинацией у- и р-связей. На первых двух рисунках показано, что в молекуле этилена валентные углы между атомами, образующими молекулу этилена, составляют 1200 (соответственно ориентации с пространстве трех sp2 - гибридных орбиталей). На третьем и четвертом рисунках показано образование р-связи. этилен (образование у-связей) этилен (образование пи-связи) Поскольку площадь перекрывания негибридизованных р-орбиталей в р-связях меньше, чем площадь перекрывания орбиталей в у-связях, то р-связь менее прочна, чем у-связь и легче разрывается в химических реакциях. 3. sp-гибридизация (третье валентное состояние углерода). В состоянии sр-гибридизации атом углерода имеет две sр-гибридные орбитали, расположенные линейно под углом 1800 друг к другу и две негибридизованные р-орбитали расположенные в двух взаимно перпендикулярных плоскостях. sр- Гибридизация характерна для алкинов и нитрилов, т.е. для соединений, имеющих в своем составе тройную связь.

s + px + py + pz = 2sp + py + pz

Так, в молекуле ацетилена валентные углы между атомами составляют 1800 . Гибридизованные электроны атома углерода образуют 2 у-связи (одна связь sp-s между атомом углерода и атомом водорода и другая связь типа sp-sp между атомами углерода. Два негибридизованных р-электрона одного атома углерода образуют две р-связи с негибридизованными р-электронами второго атома углерода. Перекрывание орбиталей р-электронов идет не только выше и ниже у-связи, но и спереди и сзади, а суммарное облако р-электронов имеет цилиндрическую форму. Таким образом тройная связь является комбинацией одной у-связи и двух р-связей. Наличие в молекуле ацетилена менее прочных двух р- связей, обеспечивает способность этого вещества вступать в реакции присоединения с разрывом тройной связи.

Вывод: sp3-гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех р-орбиталей образуются четыре гибридные sp3-орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109°.

В процессе определения геометрической формы химической частицы важно учитывать, что пары валентных электронов основного атома, включая и те, которые не образуют химической связи, находятся на большом расстоянии друг от друга в пространстве.

Особенности термина

Рассматривая вопрос, касающийся ковалентной химической связи, часто применяют какое понятие, как гибридизация атомных орбиталей. Этот термин связан с выравниванием формы и энергии. Гибридизация атомных орбиталей связана с квантово-химическим процессом перестройки. Орбитали в сравнении с исходными атомами имеют иное строение. Суть гибридизации заключается в том, что тот электрон, который располагается рядом с ядром связанного атома, определяется не конкретной атомной орбиталью, а их совокупностью с равным главным квантовым числом. В основном данный процесс касается высших, близких по энергии атомных орбиталей, имеющих электроны.

Специфика процесса

Типы гибридизации атомов в молекулах зависят от того, как происходит ориентация новых орбиталей. По типу гибридизации можно определить геометрию иона либо молекулы, предположить особенности химических свойств.

Типы гибридизации

Такой тип гибридизации, как sp, представляет собой линейную структуру, угол между связями составляет 180 градусов. Примером молекулы с подобным вариантом гибридизации является BeCl 2 .

Следующий тип гибридизации - sp 2 . Молекулы характеризуются треугольной формой, угол между связями составляет 120 градусов. Типичным примером такого варианта гибридизации является BCl 3 .

Тип гибридизации sp 3 предполагает тетраэдрическое строение молекулы, типичным примером вещества с данным вариантом гибридизации является молекула метана CH 4 . Валентный угол в таком случае составляет 109 градусов 28 минут.

В гибридизации принимают непосредственное участие не только парные электроны, но и неразделенные пары электронов.

Гибридизация в молекуле воды

К примеру, в молекуле воды между атомом кислорода и атомами водорода существуют две ковалентные полярные связи. Кроме того, сам атом кислорода обладает двумя парами внешних электронов, которые не принимают участия в создании химической связи. Эти 4 электронные пары в пространстве занимают определенное место вокруг кислородного атома. Так как все они обладают одинаковым зарядом, в пространстве они отталкиваются, электронные облака находятся друг от друга на существенном расстоянии. Тип гибридизации атомов в данном веществе предполагает изменение формы атомных орбиталей, происходит их вытягивание и выстраивание к вершинам тетраэдра. В результате молекула воды приобретает угловую форму, между связями кислород-водород валентный угол составляет 104,5 o .

Чтобы предсказать тип гибридизации, можно воспользоваться донорно-акцепторным механизмом образования химической связи. В результате осуществляется перекрытие свободных орбиталей элемента с меньшей электроотрицательность, а также орбиталей элемента с большей электрической отрицательностью, на которой находится пара электронов. В процессе составления электронной конфигурации атома учитывается их степень окисления.

Правила выявления вида гибридизации

Для того чтобы определить тип гибридизации углерода, можно использовать определённые правила:

  • выявляют центральный атом, вычисляют количество σ-связей;
  • ставят в частице степени окисления атомов;
  • записывают электронную конфигурацию главного атома в требуемой степени окисления;
  • составляют схему распределения по орбиталям валентных электронов, спаривая электроны;
  • выделяют орбитали, которые принимают непосредственно участие в образовании связи, находят неспаренные электроны (при недостаточном для гибридизации количестве валентных орбиталей применяют орбитали следующего энергетического уровня).

Геометрия молекулы определяется типом гибридизации. На нее не влияет присутствие пи-связей. В случае дополнительного связывания возможно изменение валентного угла, причина состоит во взаимном отталкивании электронов, образующих кратную связь. Так, в молекуле оксида азота (4) при sp 2 -гибридизации происходит возрастание валентного угла со 120 градусов до 134 градусов.

Гибридизация в молекуле аммиака

Неразделенная пара электронов оказывает влияние на результирующий показатель дипольного момента всей молекулы. В аммиаке тетраэдрическое строение вместе с неразделенной парой электронов. Ионность связи азот-водород и азот-фтор имеют показатели 15 и 19 процентов, длины определены в 101 и 137 пм соответственно. Таким образом, в молекуле фторида азота должен быть больший дипольный момент, но результаты эксперимента свидетельствуют об обратном.

Гибридизация в органических соединениях

Для каждого класса углеводородов характерен свой тип гибридизации. Так, при образовании молекул класса алканов (предельных углеводородов) все четыре электрона атома углерода образуют гибридные орбитали. При их перекрывании образуется 4 гибридных облака, вытраиваемых к вершинам тетраэдра. Далее их вершины перекрываются с негибридными s-орбиталями водорода, образуя простую связь. Для насыщенных углеводородов характерна sp 3 -гибридизация.

У ненасыщенных алкенов (их типичным представителем является этилен) в гибридизации принимают участие только три электронных орбитали - s и 2 p, три гибридных орбитали образуют в пространстве форму треугольника. Негибридные p-орбитали перекрываются, создавая в молекуле кратную связь. Этот класс органических углеводородов характеризуется sp 2 -гибридным состоянием углеродного атома.

Алкины отличаются от предыдущего класса углеводородов тем, что в процессе гибридизации участвуют всего два вида орбиталей: s и p. Оставшиеся у каждого атома углерода два негибридных p-электрона перекрываются в двух направлениях, образуя две кратные связи. Данный класс углеводородов характеризуется sp-гибридным состоянием углеродного атома.

Заключение

Благодаря определению вида гибридизации в молекуле можно объяснить строение разных неорганических и органических веществ, предсказать возможные химические свойства конкретного вещества.

error: