Лечебные свойства минеральной воды для взрослых и детей. Основные физические свойства минералов От чего зависят свойства минералов

В этой статье: история создания минеральной ваты; из чего и как производится минвата; виды, свойства и характеристики минеральной ваты; что обеспечивает минвате тепло- и звукоизоляционные свойства; классификация минеральной ваты; как справиться с отрицательными свойствами; на что обратить внимание при покупке.

Среди множества забот о своем жилище проблема утепления и защищенности от шума стоит на первых позициях. Летний зной и зимняя стужа — защиту от этих сезонных явлений человечество изобретало веками, но чаще всего опиралось на источники тепла, будь то открытый огонь или электрообогреватель. Что до звукоизоляции, то часто возникает ощущение, будто живешь как в булгаковском «Трактате о жилище» — в близком подобии «телефонной трубки», в которой звуки проникают часто и отовсюду. Решить две проблемы сразу позволят изоляционные материалы на основе минеральной ваты — только вот выбирать их следует внимательно и крайне придирчиво.

Своим возникновением минеральная вата обязана природе — во время извержения вулканов, помимо лавы и палящих туч, образуются тонкие нити из расплавленных брызг шлака, подхваченных ветром. Заметив это и решив, что такой материал отлично подойдет в качестве утеплителя, английский промышленник Эдвард Перри в 1840 году воспроизвел процесс формирования нитей из доменного шлака. Но им была допущена грубейшая ошибка — создание шлаковой ваты проходило в открытую, поэтому часть произведенных волокон свободно разлеталась по цеху и рабочие были вынуждены вдыхать их. В результате несколько человек пострадало, а сам Перри отказался от идеи производства минеральной ваты.

Спустя 30 лет, в 1871 году на металлургическом заводе германского городка Георгсмариенхютте было запущено промышленное производство минеральной ваты с учетом ошибок Эдварда Перри.

Технология производства минваты

Исходным материалом для каменной ваты служат известняк, диабаз, базальт и доломит, для шлаковой ваты — шлаковые отходы доменной металлургии, а стекловата производится из стеклянного боя либо из известняка, соды и песка. При внешней схожести, скажем, каменной ваты различных производителей, ее характеристики будут несколько различаться, поскольку точное сочетание сырьевых компонентов каждый производитель рассчитывает «под себя», поручая расчет точной формулы технологам производственных лабораторий и сохраняя результаты в строгом секрете.

Необходимо составить рецептуру так, чтобы полученное в результате волокно обладало максимальными качественными свойствами: гидрофобностью и долговечностью, химической нейтральностью к металлам и материалам, используемым в строительстве и отделке. Обладая этими качественными характеристиками, минеральное волокно должно иметь наивысшие теплоизоляционные показатели, сопротивляться любым динамическим нагрузкам. Существуют два критерия качества, применимых к минеральной вате — толщина волокна и его химический состав. И если точные сведения по второму критерию недоступны широкой публике, то зависимость качества от толщины волокон минеральной ваты такова — чем тоньше волокно, тем выше теплоизоляционные свойства минваты.

Производство минеральной ваты начинается с расплава сырьевых компонентов, для этого подготовленная смесь загружается в вагранки, ванные либо шахтные плавильные печи. Температура плавления в диапазоне 1400-1500 градусов — соблюдение точности при разогреве исходной смеси компонентов крайне важно, т.к. от степени вязкости расплава зависит длина и толщина получаемых волокон, а значит динамические и теплоизоляционные свойства самой минеральной ваты.

На следующем технологическом этапе доведенный до заданной вязкости расплав поступает в центрифуги, внутри которых со скоростью свыше 7000 оборотов в минуту вращаются валки, разрывающие расплавленную массу на мириады тонких волокон. В камере центрифуги волокна покрываются связующими компонентами синтетического происхождения — в их роли, как правило, выступают фенолформальдегидные смолы. Затем мощный поток воздуха бросает образовавшиеся волокна в особую камеру, где они осаждаются, образовывая подобие ковра заданных размеров.

Из камеры осаждения волокна поступают на ламельную или гофрировочную машину, где ковру из волокон придается заданная форма и объем. Далее ковер из минеральной ваты помещается в термокамеру — под воздействием высокой температуры органическое связующее проходит полимеризацию, а сама минеральная вата приобретает окончательную форму и объем. Финишная термообработка проходит при строго определенных температурах — именно на этом этапе формируются прочностные свойства минеральной ваты.

На завершающем этапе прошедшая полимеризацию минеральная вата разрезается на блоки заданных размеров и проходит упаковку.

Минеральная вата — свойства и характеристики

ГОСТ 52953-2008 относит к теплоизоляционным материалам этой группы стеклянную вату, шлаковую вату и каменную вату. Эти виды теплоизоляционных материалов различаются не только по сырьевому материалу, но также по ряду других параметров: длине и толщине волокон; термостойкости; сопротивлению динамическим нагрузкам; гигроскопичности; коэффициенту теплопроводности. Кроме того, с каменной и шлаковой ватой гораздо проще работать, чем со стекловатой — ее колкость широко известна, ведь в СССР ее применяли повсеместно по причине дешевизны.

Рассмотрим характеристики каждого типа минеральной ваты по отдельности.

Стекловата

Толщина волокон стекловаты от 5 до 15 мкм, длина — от 15 до 50 мм. Такие волокна придают стекловате высокую прочность и упругость, практически не влияя на теплопроводность, равную 0,030-0,052 Вт/м·К. Оптимальная температура нагрева, которую выдерживает стекловата — 450 оС, предельно допустимая — 500 оС, предельная температура охлаждения — 60 оС. Основная сложность работы со стекловатой — ее высокая хрупкость и колкость. Сломанные волокна легко пронзают кожу, проникают в легкие и глаза, поэтому защитные очки и респиратор, одноразовая спецодежда (очистить ее от волокон стекловаты не удастся) и перчатки обязательны;

Шлаковая вата

Толщина волокон которой от 4 до 12 мкм, длина — 16 мм, среди всех прочих видов минеральной ваты выдерживает наименьшую температуру — до 300 оС, выше которой ее волокна спекаются, а функции теплоизоляции полностью прекращаются. Шлаковата имеет высокую гигроскопичность, поэтому не допускается к работам на фасадах зданий и для теплоизоляции водопроводных труб. Еще один минус шлаковаты — доменные шлаки, из которых она производится, обладают остаточной кислотностью, что при малейшем увлажнении приводит к кислотообразованию и возникновению агрессивной среды для металлов. В сухом состоянии ее теплопроводность находится в диапазоне 0,46 — 0,48 Вт/м·К, т.е. является наибольшей среди теплоизоляционных материалов ее группы. В довершении — волокна шлаковаты хрупки и колки, подобно волокнам стекловаты;

Каменная вата

Толщина и длина составляющих ее волокон такая же, как у шлаковаты. В остальном ее характеристики лучше — теплопроводность в пределах 0,077-0,12 Вт/м·К, предельно выдерживаемая температура нагрева равна 600 оС. Ее волокна не колки, с каменной ватой намного проще работать, чем со стекловатой или шлаковатой. Лучшими характеристиками обладает базальтовая вата, производимая практически из того же исходного материала, что и каменная. Разница лишь в том, что в исходный материал (диабаз или габбро) для каменной ваты производители добавляют минералы (известняк, доломит и глину), шихту или доменные шлаки, что увеличивает текучесть расплава — доля минеральных и иных примесей в каменной вате может составлять до 35%. Кстати, на строительных рынках минеральной ватой называют именно каменную вату.

Помимо теплоизоляционных материалов, относящихся к минеральной вате, существует еще базальтовое волокно. Оно не содержит каких-либо примесей или связующих компонентов, поэтому выдерживает наибольшие температуры нагрева (до + 1000 оС) и охлаждения (до — 190 оС). Отсутствие связующего не позволяет сформировать из базальтового волокна листы или рулоны, этот теплоизоляционный материал используют в насыпном виде или набивают им маты.

Любой теплоизоляционный материал, относящийся к минеральной вате, имеет высокие показатели по звукопоглощению — практически абсолютное звукопоглощение у базальтового супертонкого волокна (БСТВ).

Все виды минеральной ваты, за исключением базальтового супертонкого волокна, содержат от 2,5 до 10% связующего на основе, как правило, фенолформальдегидных смол. Чем меньший процент этого связующего содержит минеральная вата, тем менее вероятна угроза испарения фенола, но, с другой стороны, большее содержание фенолформальдегидных смол дает большую устойчивость к воздействию влаги.

Любой вид минеральной ваты не горит и не поддерживает горения — если температура превышает допустимую для данного вида минваты, ее волоски будут лишь сплавляться между собой.

Почему минеральная вата — эффективный тепло- и звукоизолятор

Теплоизоляция минеральной ваты основана на двух элементах: малый диаметр составляющих ее волокон не позволяет накапливать тепло; хаотичная внутренняя структура образует множество воздушных пазух, препятствующих свободной передаче лучевого теплоизлучения. Теплоизоляция жесткой плит из минваты обеспечивается хаотичной ориентацией и расположением волокон. Кстати, их стойкость к динамическим нагрузкам будет тем выше, чем больший процент образующих волокон будет расположен вертикально — т.е. производители минераловатных плит вынуждены находить оптимальный баланс между теплопроводностью и устойчивостью к сжатию.

Звукоизоляция с помощью минеральной ваты достигается за счет ее воздушно-ячеистой внутренней структуры — стоячие звуковые волны и акустические шумы немедленно затухают, т.к. не могут продолжать свое распространение.

Маты и плиты на основе минеральной ваты применяются для теплоизоляции прямо- и криволинейных поверхностей — кровли и внутренних стен, потолков и перегородок, полов зданий и щитовых конструкций. Работы по монтажу минеральной ваты не требуют специальных навыков.

Минеральные плиты классифицируются по плотности:

Марка П-75

Плитами и минеральной ватой марки П-75, плотность которой равна 75 кг/м 3 , изолируют ненагруженные горизонтальные поверхности, к примеру, чердаки зданий, а в некоторых случаях — для теплоизоляции кровли. Используются для утепления трубопроводов теплосети, газо- и нефтепроводов;

Марка П-125

Марка П-125 минеральных плит и ваты применяется для тепло- и звукоизоляции ненагруженных поверхностей любого пространственного положения, в построении внутренних перегородок, теплоизоляции полов и потолков. Плиты этой марки применяются в качестве срединного слоя в трехслойных кирпичных, газобетонных, керамзитобетонных стенах зданий малой этажности;

Марка ПЖ-175

Жесткой плитой марки ПЖ-175 изолируют стены и перекрытия из профилированного металлического листа и железобетонных изделий (без цементной стяжки);

Марка ППЖ-200

Повышенно-жесткая плита ППЖ-200 применяется для повышения огнестойкости инженерных и строительных сооружений — в остальном область ее применения идентична области применения ПЖ-175.

Производители выпускают минеральные плиты и вата меньшей плотности, чем П-75 — соответственно, такая продукция применяется в основном на горизонтальных поверхностях при условии полного отсутствия динамических нагрузок.

Минусы минеральной ваты

Работать с продукцией на ее основе не совсем безопасно, несмотря на отсутствие колкости у волокон каменной ваты. Связующее на основе фенолформальдегидных смол может выделять фенол , что совсем не благоприятствует здоровью домочадцев. Кроме того, мельчайшие частицы волокон минваты неизбежно будут подняты в воздух в процессе монтажа, а их проникновение в легкие весьма не желательно.

Впрочем, отрицательных моментов можно избежать. Во втором случае — воспользоваться респиратором, тщательно затянуть всю поверхность уложенной минеральной ваты или плиты паронепроницаемой пвх-пленкой. Что до опасности выделения фенола — при обычной температуре, называемой условно «комнатной», продукция крупнейших производителей изделий из минерального волокна не будет испускать фенол.

Но — выделение фенола неизбежно при условии нагрева минеральной ваты до предельно расчетных температур, т.к. при таких температурах образованные фенолформальдегидными смолами связи будут утрачены. Итак, решить проблему с фенолом в минвате помогут выбор продукции крупного производителя, исключить возможность нагрева утеплителя до температур, превышающих расчетную, или выстраивать теплоизоляцию на базальтовом супертонком волокне, не содержащем связующего (наиболее дорогостоящее решение).

На что нужно обратить внимание при выборе минваты

На производителя — пусть это будет известная марка, к примеру, «Rockwool», «ISOVER», «PAROC» или «URSA». Если появится возможность приобрести минвату немецкого производителя — сделайте это, ведь органы сертификации Германии считаются наиболее придирчивыми к этой продукции, если сравнивать со всеми прочими странами Евросоюза.

Определитесь с плотностью минеральной ваты — чем она выше, тем дороже сама минвата. Зависимость цены от плотности связана с большим числом волокон в более плотной минеральной вате, соответственно, с большим расходом материала при производстве.

Не соблазняйтесь низкой стоимостью стекловаты и шлаковаты, ведь их тепло- и звукоизоляционные характеристики наиболее низки, да и выполнять монтаж будет не просто из-за колкости.

Выясните, имеют ли волокна в данной минеральной вате вертикальное ориентирование или их расположение хаотично — во втором случае тепло- и звукоизоляционные свойства будут выше, а в первом — выше стойкость к динамическим нагрузкам.

В зависимости от приобретаемого вида минеральной ваты, она должна соответствовать ГОСТу. Вот некоторые из них: для плит из минваты — ГОСТ 9573-96 ; для матов прошивных — ГОСТ 21880-94 ; для плит повышенной жесткости — ГОСТ 22950-95 .

И, наконец, не доверяйте утверждениям продавцов, что «данная минеральная вата действительно имеет толщину 50 мм» — частично вскройте упаковку и убедитесь в этом лично!

Абдюжанов Рустам, рмнт.ру

Все минералы как физические тела обладают разнообразными свойствами: обликом кристаллов, твердостью, плотностью, спайностью, изломом, цветом, цветом черты и др. В зависимости от химического состава и кристаллической структуры эти свойства у различных минералов проявляются по-разному, и каждый; минерал характеризуется какими-либо особыми признаками, по которым его можно отличить от других. Физические свойства минералов используются для определения минералов и дают возможность, в свою очередь, судить о свойствах горных пород.

1. Форма кристаллов.

В природе большинство минералов распространено в виде зерен неправильной формы. Гораздо реже встречаются минералы, имеющие более или менее выраженную форму многогранников. Но и те и другие обладают внутренним кристаллическим строением.

Одним из основных характерных свойств большинства кристаллических минералов является их свойство самоограничения, т. е. - способность принимать многогранную форму. Каждому минералу свойственна своя кристаллическая форма, которая зависит от химического состава, строения вещества и условий его образования.

Кристаллами называются природные или искусственно созданные тела, которые имеют форму многогранников. Пространственное расположение составляющих частиц характеризует структуру кристалла.

Плоскости, ограничивающие кристаллы, называются гранями, линии пересечения граней - ребрам, точки пересечения ребер - вершинами (рис. 1). Установлено, что углы между соответствующими гранями кристаллов одного и того же минерала одинаковы и постоянны. Этот закон постоянства гранных углов дает возможность по этим углам точно определять, минералы. При постоянстве гранных углов величина и форма граней минерала может значительно меняться, в связи с чем будет меняться общий вид кристаллов, но структура кристаллов при этом остается неизменной. Закон постоянства гранных углов вытекает из того, что при росте кристаллов грани его перемещаются параллельно самим себе.

Рис. 1.

Кристаллы, как правило, имеют симметричное строение, выражающееся в повторении элементов его ограничения: граней, ребер и вершин.

Штриховатость. Нередко грани кристаллов бывают покрыты штрихами. Для ряда минералов это свойство является весьма постоянным и служит одним из диагностических признаков. Так, например, поперечная, параллельная штриховка на призматических гранях кварца; долевая штриховка на гранях турмалина, взаимно перпендикулярная штриховка на гранях пирита (рис. 4).

Рис.4.

2. Твердость . Под твердостью подразумевают степень сопротивления механическому воздействию другого, более прочного тела или особость минерала сопротивляться царапанию других минералов. Твердость обусловлена силой сцепления частиц.

В минералогической практике применяется наиболее простой способ определения твердости царапанием одного минерала другим, т.е. устанавливается относительная твердость. Для оценки этой твердости применяется шкала Мооса, состоящая из десяти эталонных минералов, из которых каждый последующий своим острым концом царапает все предыдущие.

За эталоны приняты следующие минералы в порядке твердости от.1 до 10:

  • 1 - тальк,
  • 2 - гипс,
  • 3 - кальцит,
  • 4 - флюорит,
  • 5 - апатит,
  • 6 - ортоклаз,
  • 7 - кварц,
  • 8 - топаз,
  • 9 - корунд,
  • 10 - алмаз.

Минералы с твердостью 1 и 2 - мягкие, царапаются ногтем; с твердостью 3 - 5 - средние, не оставляют царапины на стекле; с твердостью 6 и 7 - твердые, не оставляют царапины на кварце и с твердостью 8 - 10 очень твердые, царапают кварц. В практике полевых работ при отсутствии шкалы Мооса - нередко прибегают к определению твердости при помощи распространенных предметов. Так твердость карандаша - 1, ногтя - : 2 - 2,5; бронзовой монеты - 3 - 3,5; железного гвоздя - 4, стекла - 5; стального ножа - 6; напильника - 7. Главная масса природных минералов обладает твердостью от 2 до 6. Это свойство является одним из важнейших признаков, характеризующих различные минералы.

При определении твердости по свежей поверхности минерала царапают эталонным минералом и устанавливают, какой минерал оставляет царапину. Если определяемый минерал царапается кварцем, а сам царапает ортоклаз, то это значит, что его твердость заключена между 6 и 7.

3. Плотность Большое значение при определении минералов имеет плотность.

Плотность - это отношение массы минерала к его объему.

Плотность колеблется в широких пределах от 0,8 (жид. битумы) до 23 (минералы группы осмистого иридия). Главная масса природных органических соединений, окислов, солей легких металлов (верхняя часть таблицы Менделеева) обладает плотностью от 1 до 3,5 (галит - 2,1, гипс - 2,3, кварц - 2,65, алмаз - 3,5); лишь некоторые имеют большую плотность: (барит - 4,3 - 4,7, корунд - 4). Соединения тяжелых металлов (нижняя часть таблицы Менделеева) характеризуется средней плотностью от 3,6 до 9 (сидерит - 3,7 - 3,9, галенит - : ,7,3, киноварь - 8,0). Наибольшие плотности характерны для самородных металлов, более 9 (медь - 9,0, серебро - 10 - 11, ртуть - 13,6, золото - 15 - 19, платина - 14 - 20).

Определение плотности производится на специальных приборах; на практике для приблизительного определения плотности пользуются взвешиванием на руке, устанавливая принадлежность минерала к легким (до 2,5), средним (до 4) или тяжелым (больше 4), причем необходимо различать тяжелые и легкие минералы среди металлов и неметаллов.

4. Спайность. Спайностью называется способность кристаллов и кристаллических зерен раскалываться или расщепляться по определенным кристаллографическим направлениям, образуя ровные поверхности, называемые плоскостями спайности.

Это свойство кристаллических минералов связано исключительно с их внутренним строением и не зависит от внешней формы кристаллов. Поэтому данный признак является одним из важных при определении минералов.

По степени совершенства различают следующие виды спайности:

а) Спайность весьма совершенная.

Минерал легко расщепляется на тонкие листочки, получить другие поверхности иначе как по спайности весьма трудно. Такой спайностью обладают слюды, тальк, гипс, хлорит.

б) Спайность совершенная.

Минералы, обладающие этой спайностью, при ударе раскалываются по определенным направлениям и дают ровные блестящие поверхности спайности, причем всегда получаются выколки по спайности, внешне очень напоминающие настоящие кристаллы. При разбивании галита получаются мелкие правильные кубики, кальцита - правильные ромбоэдры. Получить излом по другим направлениям очень трудно.

в) Средняя спайность.

Такой спайностью обладают минералы, у которых при раскалывании наблюдаются как плоскости спайности, так и неровные изломы по случайным направлениям, например полевые шпаты, роговая обманка и др.

г) Спайность несовершенная.

Она обнаруживается с трудом, ее приходится отыскивать на обломках минерала, причем большая часть обломков ограничена неровными поверхностями излома. Такая спайность наблюдается у апатита, оливина, самородной серы.

д) Спайность весьма несовершенная, т.е. практически отсутствует или обнаруживается в исключительных случаях, например у кварца, корунда и др.

Спайность у минералов может наблюдаться по одному направлению (слюда), двум (полевые шпаты), трем (кальцит, каменная соль).

5. Излом. Минералы, у которых отсутствует спайность, при раскалывании характеризуются образованием неровных поверхностей, называемых изломом.

Различают следующие виды излома:

  • 1) раковистый, похожий на внутреннюю поверхность раковины, например у кварца, халцедона, опала;
  • 2) занозистый, когда на поверхности излома заметны мелкие, ориентированные в одном направлении занозы, как например, асбеста, селенита (волокнистый гипс), роговой обманки;

зернистый, встречающийся у минералов, имеющих зернистое мелкокристаллическое строение, например гипс, ангидрит;

землистый, поверхность излома матовая, шероховатая и как бы покрытая пылью, например у каолинита, лимонита.

6. Цвет. При первом знакомстве с минералами невольно в глаза бросается их окраска, которая бывает самой различной: белой, розовой, красной, синей, фиолетовой, зеленой, черной, всевозможных оттенков. Минералы могут быть и бесцветными. Для некоторых минералов цвет является постоянным и характерным признаком, например, малахит всегда зеленый, галенит свинцово-серый, пирит латунно-желтый. Недаром ряд названий дан минералам именно по этому признаку, хлорит ("хлорос" по-гречески "зеленый"), рубин ("рубер" с латинского "красный"), альбит ("альбус" с латинского"белый"), меланит ("мелас" по гречески "черный"). И наоборот, некоторые названия минералов вошли в наш лексикон как стандартные цвета красок, указывая, что эти цвета постоянны для данных минералов, например киноварь, малахитовая зелень.

Однако для многих минералов цвет нельзя считать основным признаком. Один и тот же минерал бывает окрашен в различные цвета в зависимости от весьма разнообразных причин, например, кварц, флюорит, гипс и др. Окраска минералов может быть обусловлена разными причинами:

наличием в составе, самого минерала красящего элемента - хромофора. К числу их следует отнести хром, ванадий, марганец, железо, кобальт, никель и др. Так, окись хрома Сr 2 О 3 , содержащаяся в минералах даже в очень незначительном количестве, окрашивает их в интенсивный красный цвет - рубин, либо в зеленый - изумруд (зеленый берилл);

окраска некоторых минералов бывает связана с изменением однородности строения кристаллической решетки, например цветная каменная соль при облучении катодными лучами становится синей, под воздействием лучей радия розовый кварц становится бурым, дымчатый - черным, при нагревании дымчатый кварц, сапфир становятся бесцветными,

для минералов, имеющих различную окраску, последняя нередко бывает связана с тонкорассеянными механическими примесями. Эти красящие вещества могут быть как неорганическими, так и органическими соединениями.

Кроме основной окраски минерала, иногда тонкий поверхностный слой имеет дополнительную окраску этo явление называется побежалостью и объясняется явлениями интерференции света в тонких пленках, образующихся на поверхности минерала в результате различных реакций. Побежалось бывает радужной, из нескольких цветов - халькопирит. С этим же явлением связана игра цветов прозрачных минералов иризация (отражение падающего света от внутренних поверхностей, трещин спайности - синие переливы Лабрадора).

При определении цвета минерала необходимо обращать внимание на то, является ли он прозрачным (просвечивающим в краях) или непрозрачным. К прозрачным минералам можно отнести гипс, кварц, кальцит, флюорит и др., к непрозрачным - пирит, гематит, лимонит и др. Многие минералы в тонких шлифах являются, прозрачными, а в крупных обломках и кристаллах кажутся непрозрачными.

Рис. 5.

Некоторые прозрачные минералы обладают свойством двойного лучепреломления (рис. 5). Это свойство минералов образовывать на просвет" двойное изображение предметов. Оно особенно хорошо выражено у разностей кальцита, называемых, исландским шпатом.

7. Цвет черты. Под этим термином подразумевается цвет тонкого порошка минерала, остающегося на поверхности фарфоровой пластины при царапании последней минералом.

Этот признак по сравнению с окраской минералов является более постоянным и более надежным, при диагностике. Цвет черты в ряде случаев совпадает с окраской самого минерала. У киновари окраска и цвет черты красные, у лазурита - синие, у магнетита - черные. У других минералов цвет черты резко отличается от цвета минерала, и в таком случае имеет важное значение при определении. Например, у гематита - цвет минерала стально-серый, черный, а черта вишнево-красная, у пирита - цвет минерала латунно-желтый, а черта черная с зеленоватым оттенком.

Большинство прозрачных и полупрозрачных минералов обладают бесцветной или слабо окрашенной чертой, поэтому наибольшее диагностическое значение цвет черты имеет для непрозрачных и резко окрашенных природных соединений. Минералы, обладающие твердостью больше 6, черты не дают.

8. Блеск. Большинство минералов в отраженном свете обладает блеском. Блеск обусловлен, во-первых, показателем преломления у прозрачных минералов и коэффициентом поглощения у непрозрачных.

Вещества, обладающие большим коэффициентам поглощения, характеризуются металлическим блеском, этот сильный блеск свойственен металлам. Они обычно непрозрачны, черта их черная или очень темная, например пирит, галенит, магнетит. Минералы с меньшим коэффициентом поглощения и более светлой чертой обладают полуметаллическим или металловидным блеском, например гематит, графит.

У прозрачных минералов по интенсивности блеска различают:

  • - алмазный блеск (характерен для минералов с показателем преломления 1,9 - 2,6). Он свойственен таким минералам, как алмаз, сфалерит (цинковая обманка)
  • - стеклянный блеск свойственен очень многим минералам с показателями преломления 1,3 - 1,9, например кварц, флюорит, карбонаты, сульфаты, корунд, гранат.

Все рассмотренные виды блеска характерны для гладких поверхностей (плоскостей спайности, граней кристаллов). Для неровных шероховатых поверхностей, с которых отраженный свет частично рассеивается, различают жирный блеск (сера, нефелин, размытый кусок каменной соли), некоторые минералы обнаруживают перламутровый блеск, вызванный явлениями интерференции света от тонких пластинок или трещинок спайности (слюды, тальк). При параллельно-волокнистом строении минерала можно видеть шелковистый блеск (асбест, селенит).

9. Прочие свойства. Существует очень немного минералов, обладающих магнитными свойствами, т. е. они действуют на магнитную стрелку или сами притягиваются к магниту. Такими свойствами обладает магнетит, никелистое железо, некоторые разности ферроплатины. Так как магнитных минералов немного, то магнитность является для них важным признаком, позволяющим сразу установить данный минерал.

Для некоторых, минералов характерна реакция со слабой соляной кислотой НСl, при которой происходит выделение углекислого газа, сопровождающееся шипением. Эта реакция характерна для карбонатов, причем в куске с соляной кислотой активно реагирует кальцит, в порошке - доломит, при нагревании - сидерит и магнезит. К прочим свойствам следует также отнести вкус (галит), ковкость (галенит), гигроскопичность (каолинит), упругость (слюды), горючесть (сера) и др.

эндогенные процессы кристаллы минеральные агрегаты химический состав

Физические свойства минераловобусловлены их внутренним строением и химическим составом. К физическим свойствам относят плотность, механические, оптические, магнитные, электрические и термические характеристики, радиоактивность и люминесценцию.

Под плотностьюминерала понимается вес единицы его объема. Плотность зависит от атомного веса атомов или ионов, слагающих кристаллическое вещество, и от плотности их упаковки в кристаллической решетке минерала. У природных веществ она варьирует в широких пределах: от значений менее 1 г/см 3 до 23 г/см 3 . По плотности минералы подразделяют на легкие (до 2,5 г/см 3), средние (2,5-4,0 г/см 3), тяжелые

(4,0-8,0 г/см 3) и весьма тяжелые (более 8,0 г/см 3). Легкими являются нефти, угли, гипс, галит; к средним относят кварц, кальцит, полевые шпаты, к тяжелым – рудные минералы.

Для отнесения минерала к одной из этих групп достаточно определить его плотность приблизительно – путем взвешивания на ладони.

Механические свойства включают твердость, спайность, излом, хрупкость, ковкость, гибкость.

Твердость минерала – это степень его сопротивления внешнему механическому воздействию (царапанью и т.д.). Она оценивается по десятибалльной шкале относительной твердости, предложенной немецким ученым Ф. Моосом в 1811 г. Относительная твердость определяется путем царапанья исследуемого минерала острыми краями эталонных минералов (пассивная твердость) или эталонных минералов исследуемым (активная твердость). Минералы-эталоны, твердость которых (в условных единицах) соответствует их номерам, располагается в шкале Мооса следующим образом: 1 – тальк, 2 – гипс, 3 – кальцит, 4 – флюорит, 5 – апатит,

6 – ортоклаз, 7 – кварц, 8 – топаз, 9 – корунд, 10 – алмаз.

Если, например, гипс не оставляет царапины на поверхности исследуемого минерала, а кальцит оставляет, значит его твердость равна 2,5.

В практике полевых работ при отсутствии шкалы Мооса твердость минералов определяется при помощи распространенных предметов с известной твердостью. Например, у карандаша она равна 1, у ногтя – 2-2,5, желтой монеты – 3-3,5, стекла – 5, стального стержня (гвоздя) – 6. Большинство природных соединений обладает твердостью от 2 до 6.

На лабораторных занятиях определение твердости минерала следует начинать с проверки, царапает ли он стекло, а не наоборот, чтобы не портить образцы. Затем уточнить значение твердости (если в этом есть необходимость) при помощи минералов шкалы Мооса.

Спайность – способность кристаллов и кристаллических зерен раскалываться или расщепляться по определенным кристаллографическим направлениям с образованием ровных блестящих поверхностей, называемых плоскостями спайности. Различают спайности:

    весьма совершенную – минералы (слюды, хлорит) легко расщепляются по плоскостям напластования на тончайшие листочки, образуя зеркально-блестящие плоскости спайности;

    совершенную – минералы (кальцит, галит, полевые шпаты) при ударе раскалываются по спайности, а образующиеся выколки по форме повторяют кристалл;

    среднюю – на сколах минералов (полевые шпаты, пироксены) наблюдаются как плоскости спайности, так и неровные изломы в произвольных направлениях;

    несовершенную – зерна минералов ограничены неправильными поверхностями, за исключением отдельных граней кристаллов (сера, оливин);

    весьма несовершенную (или спайность отсутствует) – минерал всегда раскалывается по произвольным неровным поверхностям, иногда образуя характерный излом (кварц, корунд, магнетит).

Минералы, у которых спайность отсутствует, обладают отдельстью.

Отдельность – это способность минерала раскалываться лишь в определенных участках, а не по определенным плоскостям. Трещины отдельности более грубые, не вполне плоские, ориентировка их зависит от характера распределения включений, двойникования и т.д.

Излом – форма поверхности, образующаяся при раскалывании минералов. Характер излома зависит от спайности. Различают ровный и неровный, ступенчатый, раковистый и мелко раковистый, занозистый, зернистый и шероховатый, крючковатый и др. разновидности изломов.

Ровный излом проходит по плоскостям спайности. Ступенчатый излом наблюдается у минералов с совершенной спайностью; неровный и раковистый (похожий на поверхность раковин) – у минералов с несовершенной и весьма несовершенной спайностью. Занозистым считается излом, поверхность которого покрыта ориентированными занозами, представляющими собой зерна кристаллов удлиненного облика (роговая обманка, гипс). Зернистый излом встречается у минералов с изометрическим (или близким) обликом кристаллов (галит). Землистым изломом обладают тонкодисперсные агрегаты с матовой поверхностью (лимонит, каолинит), крючковатым – самородные металлы.

Хрупкость, ковкость, гибкость минералов определяются визуально, по их реакции на механические напряжения.

Оптические свойства включают цвет минералов, цвет черты, степень прозрачности, блеск.

Цвет (окраска) минерала является важным диагностическим признаком. Названия многим минералам даны по их цвету (например, хлорит в переводе с греческого означает «зеленый», альбит – с латинского «белый», рубин – «красный»). В природных соединениях окраска минерала обусловлена следующими причинами:

    наличием в составе минерала элемента-красителя (хромофора). Наиболее важные хромофоры – Cu, Ni, Co, Ca, Mn, Fe;

    наличием тонко распыленных механических окрашенных примесей, которые могут быть как органического, так и неорганического происхождения (бурые окислы железа, черные окислы марганца и т.п.);

    наличием субмикроскопических ориентированных включений и внутренних поверхностей трещин спайности. В некоторых минералах кроме основной окраски иногда на плоскостях спайности или полированных поверхностях при некоторых углах поворота вспыхивают яркие синие, голубые или зеленоватые переливы. Подобные явления получили название иризация. Наблюдается это явление чаще всего в плагиоклазах (лабрадор);

    наличием пестрых поверхностных образований, т.н. побежалости, например, золотистые пленки наблюдаются на поверхности бурых железняков, темно-желтые или пестрые – на поверхности халькопирита.

На лабораторных занятиях цвет минералов определяется на глаз, путем сравнения с известными цветами.

Цвет черты – это цвет минерала в тонком порошке. Этот признак в сравнении с окраской минералов является более постоянным, а следовательно, и более надежным их диагностическим признаком.

Цвет черты не всегда совпадает с цветом самого минерала. Например, у магнетита и цвет, и цвет черты черные, а у гематита, который в плотных агрегатах имеет стально-серый или черный цвет, черта вишнево-красная. Большинство светлоокрашенных и прозрачных минералов имеют бесцветную черту.

Практически черта определяется с помощью неглазурованной фарфоровой пластинки – бисквита. Порошок получается в виде следа на пластинке, если прочертить по ней минералом. Черту на бисквите оставляют минералы с твердостью до 6 (6 – твердость бисквита). Более твердые минералы черты не оставляют, а царапают бисквит. Для них черта не определяется.

Прозрачностью называется свойство минералов пропускать сквозь себя свет. По степени прозрачности минералы делятся на 3 группы:

    прозрачные – минералы, пропускающие свет в пластинах любой толщины (горный хрусталь, исландский шпат);

    полупрозрачные – минералы, просвечивающие только в тонких пластинах (опал, халцедон);

    непрозрачные – не пропускают свет даже в тончайших пластинках (рудные минералы).

Блеск – способность минерала отражать падающий на него световой поток. Гладкие поверхности (грани, плоскости спайности) всегда лучше отражают свет, чем неровные. Различают следующие виды блеска:

    металлический – самый сильный блеск минералов. Наблюдается у темноокрашенных непрозрачных минералов. Визуально аналогичен блеску неокисленной поверхности металлов. Таким блеском обладают самородные металлы.

    полуметаллический (металловидный) – блеск, напоминающий блеск потускневшей поверхности металлов. Наблюдается у гематита, графита.

    алмазный – самый сильный блеск светлоокрашенных минералов. В качестве примера может служить блеск алмазов, серы на гранях кристаллов.

    стеклянный – самый распространенный блеск светлоокрашенных и бесцветных минералов. Такой блеск у кварца (на гранях), галита, карбонатов и сульфатов.

Если минерал в изломе имеет скрытобугорчатую или ямчатую поверхность, свет при отражении рассеивается беспорядочно, создается жирный блеск. Для скрытокристаллических масс (халцедон) и твердых светлоокрашенных гелей (опал), поверхности которых обладают более выраженной неровностью, характерен восковой блеск. Тонкодисперсные массы, обладающие тонкой пористостью, имеют матовый блеск. В данном случае падающий свет очень сильно рассеивается при отражении и поверхность минерала кажется матовой (каолинит, гидроокислы железа).

Для минералов, обладающих явно выраженной ориентировкой элементов строения, характерны шелковистый и перламутровый блески. Шелковистый блеск встречается у минералов с параллельно-волокнистым строением (асбест, гипс-селенит), перламутровый – у прозрачных минералов со слоистой структурой (слюды, тальк).

Магнитные свойства– это совокупность свойств, характеризующих способность минералов намагничиваться во внешнем магнитном поле. На практике испытание магнитности минералов производится с помощью горного компаса. Магнитные минералы (магнетит) отклоняют стрелку от естественного направления (на север).

Электрические свойства – это совокупность свойств, характеризующих способность минералов проводить электрический ток.

Текст: Светлана Ракутова

Можно ли проводить лечение организма с помощью обычной минеральной воды, каковы лечебные свойства минеральной воды и чем полезна минеральная вода для детей?

Свойства минеральной воды

Мы любим пить минеральную воду не только потому, что нам нравится ее вкус, но и потому, что понимаем – пить минеральную воду полезно для здоровья. Полезные свойства минеральной воды обусловлены тем, что она содержит растворенные минералы, которые есть в грунтовых водах. Такими же свойствами обладает вода, которую берут из родников или поднимают из деревенских колодцев. Газированная минеральная вода также содержит природные газы или же она может быть искусственно газирована углекислым газом . Разные страны устанавливают различные стандарты для количества минералов, необходимых для того, чтобы бутилированная вода называлась «минеральной».

Одно из самых ценных свойств минеральной воды – отсутствие лишних калорий. Пить минеральную воду - это способ обеспечивать организм полезными микроэлементами, не прибавляя в весе. Газированная минеральная вода обычно содержит кальций, магний, калий и иногда натрий. Это самые распространенные минералы в составе грунтовых вод. Некоторые виды газированной минеральной воды содержат хром, медь, цинк, железо, марганец, селен и другие полезные микроэлементы, каждый из которых имеет большое значение для здоровья. Минеральная вода является лучшим источником минералов, чем любая другая вода, например, взятая из колодца. В некоторых странах с современными системами фильтрации воды люди могут пить ее из-под крана. Но она, конечно же, не сравнится по свойствам с минеральной водой. А в нашей стране водопроводная вода чаще всего содержит фтор и хлор, что может пагубно сказаться на здоровье многих людей.

Если сравнивать свойства минеральной воды со свойствами дистиллированной, то последняя совсем не содержит минеральных веществ. Как и многие марки фильтрованной воды, которую продают в магазинах – в ней также очень мало или вообще нет минеральных веществ.

Лечебные свойства минеральной воды

Когда говорят о лечебных свойствах минеральной воды, обычно вспоминают о содержании в ней большого количества кальция. Минеральная вода может стать альтернативным источником кальция для людей с непереносимостью лактозы . Такие люди не в состоянии потреблять большинство молочных продуктов из-за своей болезни. Но вместо молока они могут пить минеральную воду. Кальция в ней, конечно, не так много как в молочных продуктах, но все же. Тем более что усвояемость кальция, полученного из минеральной воды, вполне сопоставима с усвояемостью кальция из молочных продуктов.

Очень важным лечебным свойством минеральной воды называют ее способность снижать в организме уровень холестерина. Употребление газированной воды может снизить количество в организме липопротеинов низкой плотности, так называемого «плохого» холестерина, и наоборот, увеличить количество «хорошего» холестерина – липопротеинов высокой плотности. Эти данные подтверждаются исследованиями, проводившимися в 2004 году на группе женщин старшего возраста (находящихся в постменопаузе), которые пили богатую натрием газированную минеральную воду.

Наконец, еще одно лечебное свойство минеральной воды – это гидратация, то есть увлажнение организма. Взрослому человеку обычно нужно около 3 литров воды в день, а в жаркие дни или при активных занятиях спортом – больше. При этом средний человек не особенно задумывается о подобных вопросах и не так часто в течение дня пьет обычную воду. А газированная минеральная вода, поощряя человека своими вкусовыми качествами, обеспечит требуемый уровень гидратации организма.

Столовая минеральная вода

Состав столовой минеральной воды очень сильно зависит от конкретной марки. Однако общие характеристики у них конечно есть. В первую очередь, любая столовая минеральная вода не содержит жира и калорий. Многие люди не учитывают содержание калорий в таких напитках, как кока-кола или фруктовые соки. Бесконтрольное употребление таких напитков вполне может сорвать программу потери веса. Причем уменьшение количества «жидких калорий» может привести к увеличению веса, в отличие от сокращения потребления калорий из пищи. Здесь очевиден выбор в пользу столовой минеральной воды, употребление которой всегда будет держать калории под контролем.

Почти во всех марках столовой минеральной воды, кроме кальция и натрия, содержится также магний. Этот микроэлемент имеет огромное значение для здоровья костей, кроме того, он также поддерживает развитие клеток, мышечной и нервной ткани. Обычная столовая минеральная вода содержит до 41% суточной рекомендуемой нормы потребления магния. Помните, что вы должны стремиться к тому, чтобы ежедневное получение магния и других микроэлементов, осуществлялось не только из столовой минеральной воды, но и из продуктов питания.

Минеральная вода для детей

Родители сталкиваются с трудным выбором, когда речь заходит о принятии решения о самом здоровом напитке, который мог бы вписаться в сбалансированную диету для ребенка. Сталкиваясь с плотным потоком рекламной информации, предлагающей тысячи разных марок вкусных напитков для детей, ребенок с трудом соглашается пить обычную воду. Убедить маленького ребенка в том, что это полезно для здоровья невозможно, для него главное, чтобы было «вкусно». Тем не менее, простая минеральная вода для детей гораздо полезнее для его организма, чем сладкие фруктовые газировки или молочные коктейли.

Здесь стоит отметить, что минеральная вода, обогащенная углекислотой, для детей вовсе не полезна. Газированная вода и газированные безалкогольные напитки в долгосрочной перспективе оказывают негативное воздействие на здоровье ребенка. Производители насыщают газированную минеральную воду для детей не только фосфорной и угольной кислотой, для создания пузырьков, но и различными вкусовыми добавками - различными подсластителями техногенной природы, которые вреднее обычного сахара, добытого из фруктов. Употребление газированной минеральной воды для детей на протяжении длительного времени приводит к снижению в детском организме уровня кальция. Это может ослабить корни зубов и вызвать повреждения зубного налета. А лишний сахар подвергает детей риску развития диабета.

error: