Отражение звуковой волны. Отражение звука. Эхо. Звуковой резонанс. Энергия звуковой волны

ОТРАЖЕНИЕ ЗВУКА - явление, возникающее при падении звуковой волны на границу раздела двух упругих сред и состоящее в образовании волн, распространяющихся от границы раздела в ту же среду, из к-рой пришла падающая волна. Как правило, О. з. сопровождается образованием преломлённых волн во второй среде. Частный случай О. з. - отражение от свободной поверхности. Обычно рассматривается отражение на плоских границах раздела, однако можно говорить об О. з. от препятствий произвольной формы, если размеры препятствия значительно больше длины звуковой волны. В противном случае имеет место рассеяние звука или дифракция звука .
Падающая волна вызывает движение границы раздела сред, в результате к-рого и возникают отражённые и преломлённые волны. Их структура и интенсивность должны быть таковы, чтобы по обе стороиы от границы раздела скорости частиц и упругие напряжения, действующие на границу раздела, были равны. Граничные условия на свободной поверхности состоят в равенстве нулю упругих напряжений, действующих на эту поверхность.
Отражённые волны могут совпадать по типу поляризации с падающей волной, а могут иметь и др. поляризацию. В последнем случае говорят о преобразовании, или конверсии, мод при отражении или преломлении. Конверсия отсутствует только при отражении звуковой волны, распространяющейся в жидкости, поскольку в жидкой среде существуют лишь продольные волны. При прохождении звуковой волной границы раздела твердых тел образуются, как правило, и продольные и поперечные отражённые и преломлённые волны. Сложный характер О. з. имеет место на границе кристаллич. сред, где в общем случае возникают отражённые и преломлённые волны трёх разл. поляризаций.
Отражение плоских волн . Особую роль играет отражение плоских волн, поскольку плоские волны, отражаясь и преломляясь, остаются плоскими, а отражение волн произвольной формы можно рассматривать как отражение совокупности плоских волн. Кол-во возникающих отражённых и преломлённых волн определяется характером упругих свойств сред и числом акустич. ветвей, существующих в них. В силу граничных условий проекции на плоскость раздела волновых векторов падающей, отражённых и преломлённых волн равны между собой (рис. 1).

Рис. 1. Схема отражения и преломления плоеной звуковой волны на плоской границе раздела.

Отсюда следуют законы отражения и преломления, согласно к-рым: 1) волновые векторы падающей k i , отражённых k r и преломлённых k t волн и нормаль NN" к границе раздела лежат в одной плоскости (плоскости падения); 2) отношения синусов углов падения отраженияи преломленияк фазовым скоростям c i , и соответствующих волн равны между собой:
(индексы и обозначают поляризации отражённых и преломлённых волн). В изотропных средах, где направления волновых векторов совпадают с направлениями звуковых лучей, законы отражения и преломления принимают привычную форму закона Снелля. В анизотропных средах законы отражения определяют только направления волновых нормалей; как будут распространяться преломлённые или отражённые лучи, зависит от направления лучевых скоростей, соответствующих этим нормалям.
При достаточно малых углах падения все отражённые и преломлённые волны представляют собой плоские волны, уносящие энергию падающего излучения от границы раздела. Однако, если скорость для к--л. преломлённой волныбольше скорости c i падающей волны, то для углов падения, больших т. н. критич. угла= arcsin, нормальная компонента волнового вектора соответствующей преломлённой волны становится мнимой, а сама прошедшая волна превращается в неоднородную волну, бегущую вдоль поверхности раздела и экспоненциально убывающую в глубь среды 2 . Однако падение волны на границу раздела под углом, большим критического, может и не приводить к полному отражению, поскольку энергия падающего излучения может проникать во 2-ю среду в виде волн другой поляризации.
Критич. угол существует и для отражённых волн, если при О. з. происходит конверсия мод и фазовая скорость волны, возникающей в результате конверсии, больше скорости c i падающей волны. Для углов падения, меньших критич. угла часть падающей энергии уносится от границы в виде отражённой волны с поляризацией; при такая волна оказывается неоднородной, затухающей в глубь среды 1, и не принимает участия в переносе энергии от границы раздела. Напр., критич. угол = arcsin(c т /c L) возникает при отражении поперечной акустич. волны Т от границы изотропного твёрдого тела и конверсии её в продольную волну L (с т и C L - скорости поперечной и продольной звуковой волны соответственно).
Амплитуды отражённых и преломлённых волн в соответствии с граничными условиями линейным образом выражаются через амплитуду А i падающей волны, подобно тому, как эти величины в оптике выражаются через амплитуду падающей эл--магн. волны с помощью Френеля формул . Отражение плоской волны количественно характеризуется амплитудными коэф. отражения, представляющими собой отношения амплитуд отражённых волн к амплитуде падающей:= Амплитудные коэф. отражения в общем случае комплексны: их модули определяют отношения абс. значении амплитуд, а фазы задают фазовые сдвиги отражённых волн. Аналогично определяются и амплитудные коэф. прохождения Перераспределение энергии падающего излучения между отражёнными и преломлёнными волнами характеризуется коэф. отражения и прохождения по интенсивности, представляющими собой отношения нормальных к границе раздела компонент средних по времени плотностей потоков энергии в отражённой (преломлённой) и в падающей волнах:

где - интенсивности звука в соответствующих волнах, и - плотности соприкасающихся сред. Баланс энергии, подводимой к границе раздела и уносимой от неё, сводится к балансу нормальных компонент потоков энергии:

Коэф. отражения зависят как от акустич. свойств соприкасающихся сред, так и от угла падения. Характер угл. зависимости определяется наличием критич. углов, а также углов нулевого отражения, при падении под к-рыми отражённая волна с поляризацией не образуется.

О. з. на границе двух жидкостей . Наиб. простая картина О. з. возникает на границе раздела двух жидкостей. Конверсия волн при этом отсутствует, и отражение происходит по зеркальному закону, а коэф. отражения равен

где и c 1,2 - плотности и скорости звука в граничащих средах 1 и 2 . Если скорость звука для падающей волны больше скорости звука для преломлённой (с 1 >c 2), то критич. угол отсутствует. Коэф. отражения действителен и плавно меняется от значения

при нормальном падении волны на границу раздела до значения R = - 1 при скользящем падении Если акустич. импеданс r 2 с 2 среды 2 больше импеданса среды 1 , то при угле падения

коэф. отражения обращается в нуль и всё падающее излучение полностью проходит в среду 2 .
Когда с 1 <с 2 , возникает критический угол=arcsin (c 1 /c 2). При < коэф. отражения - действительная величина; фазовый сдвиг между падающей и отражённой волнами отсутствует. Величина коэф. отражения меняется от значения R 0 при нормальном падении до R = 1 при угле падения, равном критическому. Нулевое отражение и в этом случае может иметь место, если для акустич. импедансов сред выполняется обратное неравенство угол нулевого отражения по-прежнему определяется выражением (6). Для углов падения, больших критического, имеет место полное внутр. отражение: и падающее излучение в глубь среды 2 не проникает. В среде 2 , однако, формируется неоднородная волна; с её возникновением связаны комплексность коэф. отражения и соответствующий фазовый сдвиг между отражённой и падающей волнами. Этот сдвиг объясняется тем, что поле отражённой волны формируется в результате интерференции двух полей: зеркально отражённой волны и волны, пе-реизлучаемой в среду 1 неоднородной волной, возникшей в среде 2 . При отражении неплоских (напр., сферических) волн такая переизлучённая волна наблюдается реально в эксперименте в виде т. н. боковой волны (см. Волны , раздел Отражение и преломление волн).

О. з. от границы твёрдого тела . Характер отражения усложняется, если отражателем является твёрдое тело. Когда скорость звука с в жидкости меньше скоростей продольного с L и поперечного с т звука в твёрдом теле, при отражении на границе жидкости с твёрдым телом возникают два критич. угла: продольный= arcsin (с/с L )и поперечный= arcsin (с/с т ) . При этом , поскольку всегда с L > с т. При углах падения коэф. отражения действителен (рис. 2). Падающее излучение проникает в твёрдое тело в виде как продольной, так и поперечной преломлённых волн. При нормальном падении звука в твёрдом теле возникает только продольная волна и значение R 0 определяется отношением продольных акустич. импедансов жидкости и твёрдого тела аналогично ф-ле (5) ( - плотности жидкости и твёрдого тела).

Рис. 2. Зависимость модуля коэффициента отражения звука | R | (сплошная линия) и его фазы (штрих-пунктирная линия) на границе жидкости и твёрдого тела от угла падения.

При > коэф. отражения становится комплексным, поскольку в твёрдом теле вблизи границы образуется неоднородная волна. При углах падения, заключённых между критич. углами и часть падающего излученпя проникает в глубь твёрдого тела в виде преломлённой поперечной волны. Поэтому для<<величина лишь при поперечная волна не образуется и |R| = 1. Участие неоднородной продольной волны в формировании отражённого излучения обусловливает, как и на границе двух жидкостей, фазовый сдвиг у отражённой волны. При > имеет место полное внутр. отражение: 1. В твёрдом теле вблизи границы образуются лишь экспоненциально спадающие в глубь тела неоднородные волны. Фазовый сдвиг у отражённой волны для углов связан в основном с возбуждением на границе раздела вытекающей Рэлея волны . Такая волна возникает на границе твёрдого тела с жидкостью при углах падения, близких к углу Рэлея = arcsin (с/с R) , где C R - скорость волны Рэлея на поверхности твёрдого тела. Распространяясь вдоль поверхности раздела, вытекающая волна полностью переизлучается в жидкость.
Если с > с т, то полное внутр. отражение на границе жидкости с твёрдым телом отсутствует: падающее излучение проникает в твёрдое тело при любом угле падения, по крайней мере в виде поперечной волны. Полное отражение возникает при падении звуковой волны под критич. углом или при скользящем падении. При c>c L коэф. отражения действительный, т. к. неоднородные волны на границе раздела не образуются.
О. з., распространяющегося в твёрдом теле . При распространении звука в изотропном твёрдом теле наиб. простой характер носит отражение сдвиговых волн, направление колебаний в к-рых параллельно плоскости раздела. Конверсия мод при отражении или преломлении таких волн отсутствует. При падении на свободную границу или границу раздела с жидкостью такая волна отражается полностью (R = 1) по закону зеркального отражения. На границе раздела двух изотропных твёрдых тел наряду с зеркально отражённой волной в среде 2 образуется преломлённая волна с поляризацией, также параллельной границе раздела.
При падении поперечной волны, поляризованной в плоскости падения, на свободную поверхность тела, на границе возникает как отражённая поперечная волна той же поляризации, так и продольная волна. При углах падения, меньших критического угла = = arcsin (c T /c L) , коэф. отражения R T и R L - чисто действительные: отражённые волны уходят от границы точно в фазе (или в противофазе) с падающей волной. При > от границы уходит только зеркально отражённая поперечная волна; вблизи свободной поверхности образуется неоднородная продольная волна.
Коэф. отражения становится комплексным, и между отражённой и падающей волнами возникает фазовый сдвиг, величина к-рого зависит от угла падения. При отражении от свободной поверхности твёрдого тела продольной волны при любом угле паденпя возникают как отражённая продольная волна, так и поперечная волна, поляризованная в плоскости падения.
Если граница твёрдого тела находится в контакте с жидкостью, то при отражении волн (продольной или поперечной, поляризованной в плоскости падения) в жидкости дополнительно возникает преломлённая продольная волна. На границе раздела двух изотропных твёрдых сред к этой системе отражённых и преломлённых волн добавляется ещё преломлённая поперечная волна в среде 2 . Её поляризация также лежит в плоскости падения.

О. з. на границе раздела анизотропных сред . О. з. на границе раздела кристаллич. сред носит сложный характер. Скорости и отражённых и преломлённых волн в этом случае сами являются ф-циями углов отражения и преломления (см. Кристаллоакустика ; )поэтому даже определение углови по заданному углу падения сталкивается с серьёзными матем. трудностями. Если известны сечения поверхностей волновых векторов плоскостью падения, то используется графич. метод определения углов и концы волновых векторов k r и k t лежат на перпендикуляре NN" , проведённом к границе раздела через конец волнового вектора k i падающей волны, в точках, где этот перпендикуляр пересекает разл. полости поверхностей волновых векторов (рис. 3). Кол-во отражённых (или преломлённых) волн, реально распространяющихся от границы раздела в глубь соответствующей среды, определяется тем, со сколькими полостями пересекается перпендикуляр NN" . Если пересечение с к--л. полостью отсутствует, то это означает, что волна соответствующей поляризации оказывается неоднородной и энергию от границы не переносит. Перпендикуляр NN" может пересекать одну и ту же полость в неск. точках (точки a 1 и а 2 на рис. 3). Из возможных положений волнового вектора k r (или k t )реально наблюдаемым волнам соответствуют лишь те, для к-рых вектор лучевой скорости, совпадающий по направлению с внеш. нормалью к поверхности волновых векторов, направлен от границы в глубь соответствующей среды.

Рис. 3. Графический метод определения углов отражения и преломления на границе раздела кристаллических сред 1 и 2. L, FT и ST - поверхности волновых векторов для квазипродольных, быстрых и медленных квазипоперечных волн соответственно.

Как правило, отражённые (преломлённые) волны принадлежат разл. ветвям акустич. колебании. Однако в кристаллах со значит. анизотропией, когда поверхность волновых векторов имеет вогнутые участки (рис. 4), возможно отражение с образованием двух отражённых или преломлённых волн, принадлежащих одной и той же ветви колебаний.
На опыте наблюдаются конечные пучки звуковых волн, направления распространения к-рых определяются лучевыми скоростями. Направления лучей в кристаллах значительно отличаются от направлении соответствующих волновых векторов. Лучевые скорости падающей, отражённых и преломлённых волн лежат в одной плоскости лишь в исключительных случаях, напр. когда плоскость падения является плоскостью симметрии для обеих крпсталлич. сред. В общем случае отражённые и преломлённые лучи занимают разнообразные положения как по отношению друг к другу, так и по отношению к падающему лучу и нормали NN" к границе раздела. В частности, отражённый луч может лежать в плоскости падения по ту же сторону от нормали N , что и падающий луч. Предельным случаем такой возможности является наложение отражённого пучка на падающий при наклонном падении последнего.

Рис. 4. Отражение акустической волны, падающей на свободную поверхность кристалла с образованием двух отраженных волн той же поляризации: а - определение волновых векторов отражённых волн (с g - векторы лучевой скорости); б - схема отражения звуковых пучков конечного сечения.

Влияние затухания на характер О. з . . Коэф. отражения и прохождения не зависят от частоты звука, если затухание звука в обеих граничных средах пренебрежимо мало. Заметное затухание приводит не только к частотной зависимости коэф. отражения R , но и искажает его зависимость от угла падения, в особенности вблизи критич. углов (рис. 5, а ). При отражении от границы раздела жидкости с твёрдым телом эффекты затухания существенно меняют угловую зависимость R при углах падения, близких к рэлеевскому углу (рис. 5,б) . На границе сред с пренебрежимо малым затуханием при таких углах падения имеет место полное внутреннее отражение и |R | = 1 (кривая 1 на рис. 5, б) . Наличие затухания приводит к тому, что |R | становится меньше 1, а вблизи образуется минимум |R | (кривые 2 - 4) . По мере увеличения частоты и соответствующего роста коэф. затухания глубина минимума увеличивается, пока, наконец, на нек-рой частоте f 0 , наз. частотой нулевого отражения, мин. значение |R | не обратится в нуль (кривая 3 , рис. 5,б ). Дальнейший рост частоты приводит к уширенпю минимума (кривая 4 )и влиянию эффектов затухания на О. з. практически для любых углов падения (кривая 5) . Уменьшение амплитуды отражённой волны по сравнению с амплитудой падающей не означает, что падающее излучение проникает в твёрдое тело. Оно связано с поглощением вытекающей волны Рэлея, к-рая возбуждается падающим излучением и участвует в формировании отражённой волны. Когда звуковая частота f равна частоте f 0 , вся энергия падающей волны диссипируется на границе раздела.

Рис. 5. Угловая зависимость |R | на границе вода - сталь с учётом затухания: а - общий характер угловой зависимости |R |; сплошная линия - без учёта потерь, штриховая линия - то же с учётом затухания; б - угловая зависимость | R \ вблизи рэлеевского угла при различных значениях поглощения поперечных волн в стали на длине волны. Кривые 1 - 5 соответствуют увеличению этого параметра от значения 3 x 10 -4 (кривая 1 )до значения = 1 (кривая 5) за счёт соответствующего возрастания частоты падающего УЗ-излучения.

О. з. от слоев и пластин . О. з. от слоя или пластины носит резонансный характер. Отражённая и прошедшая волны формируются в результате многократных переотражений волн на границах слоя. В случае жидкого слоя падающая волна проникает в слой под углом преломления определяемым из закона Снелля. За счёт переотражений в самом слое возникают продольные волны, распространяющиеся в прямом и обратном направлениях под углом к нормали, проведённой к границам слоя (рис. 6, а ). Уголпредставляет собой угол преломления, отвечающий углу падения на границу слоя. Если скорость звука в слое с 2 больше скорости звука с 1 в окружающей жидкости, то система переотражённых волн возникает лишь тогда, когда меньше угла полного внутр. отражения = arcsin (c 1 /c 2). Однако для достаточно тонких слоев прошедшая волна образуется и при углах падения, больших критического. В этом случае коэф. отражения от слоя оказывается по абс. величине меньше 1. Это связано с тем, что при в слое вблизи той его границы, на к-рую падает извне волна, возникает неоднородная волна, экспоненциально спадающая в глубь слоя. Если толщина слоя d меньше или сравнима с глубиной проникновения неоднородной волны, то последняя возмущает противоположную границу слоя, в результате чего с неё излучается в окружающую жидкость прошедшая волна. Это явление просачивания волны аналогично просачиванию частицы через потенциальный барьер в квантовой механике.
Коэф. отражения от слоя

где - нормальная компонента волнового вектора в слое, ось z - перпендикулярна границам слоя, R 1 и R 2 - коэф. О. з. соответственно на верхней и нижней границах. При представляет собой периодич. ф-цию звуковой частоты f и толщины слоя d . При когда имеет место просачивание волны через слой, | R | при увеличении f или d монотонно стремится к 1.

Рис. 6. Отражение звуковой волны от жидкого слоя: а - схема отражения; 1 - окружающая жидкость; 2 - слой; б - зависимость модуля коэффициента отражения |R| от угла падения.

Как ф-ция угла падениязначение | R | имеет систему максимумов и минимумов (рис. 6, б) . Если по обе стороны слоя находится одна и та же жидкость, то в точках минимума R = 0. Нулевое отражение возникает, когда набег фазы на толщине слоя равен целому числу полупериодов

и волны, выходящие в верхнюю среду после двух последовательных переотражений, будут находиться в противофазе и взаимно гасить друг друга. Наоборот, в нижнюю среду все переотражённые волны выходят с одной и той же фазой, и амплитуда прошедшей волны оказывается максимальной. При нормальном падении волны на слой полное пропускание имеет место, когда на толщине слоя укладывается целое число полуволн: d = где п = 1,2,3,..., - длина звуковой волны в материале слоя; поэтому слои, для к-рых выполнено условие (8), наз. полуволновымн. Соотношение (8) совпадает с условием существования нормальной волны в свободном жидком слое. В силу этого полное пропускание через слои возникает, когда падающее излучение возбуждает в слое ту или иную нормальную волну. За счёт контакта слоя с окружающей жидкостью нормальная волна является вытекающей: при своём распространении она полностью переизлучает энергию падающего излучения в нижнюю среду.
Когда жидкости по разные стороны от слоя различны, наличие полуволнового слоя никак не сказывается на падающей волне: коэф. отражения от слоя равен коэф. отражения от границы этих жидкостей при их непо-средств. контакте. Помимо полуволновых слоев в акустике, как и в оптике, большое значение имеют т. н. четвертьволновые слои, толщины к-рых удовлетворяют условию(п= 1,2,...). Подбирая соответствующим образом акустич. импеданс слоя, можно получить нулевое отражение от слоя волны с заданной частотой f при определённом угле падения её на слой. Такие слои используются в качестве просветляющих акустических слоев.
Для отражения звуковой волны от бесконечной твёрдой пластины, погружённой в жидкость, характер отражения, описанный выше для жидкого слоя, в общих чертах сохранится. При переотражениях в пластине дополнительно к продольным будут также возбуждаться сдвиговые волны. Углы и, под к-рыми распространяются соответственно продольные и поперечные волны в пластине, связаны с углом падения законом Снелля. Угл. и частотная зависимости |R | будут представлять собой, как и в случае отражения от жидкого слоя, системы чередующихся максимумов и минимумов. Полное пропускание через пластину возникает в том случае, когда падающее излучение возбуждает в ней одну из нормальных волн, представляющих собой вытекающие Лэмба волны .Резонансный характер О. з. от слоя или пластины стирается по мере того, как уменьшается отличие их акустич. свойств от свойств окружающей среды. Увеличение акустич. затухания в слое также приводит к сглаживанию зависимостей и |R(fd )|.

Отражение неплоских волн . Реально существуют только неплоские волны; их отражение может быть сведено к отражению набора плоских волн. Монохроматич. волну с волновым фронтом произвольной формы можно представить в виде совокупности плоских волн с одной и той же круговой частотой, но с разл. направлениями волнового вектора k. Осн. характеристикой падающего излучения является его пространственный спектр - набор амплитуд A (k) плоских волн, образующих в совокупности падающую волну. Абс. величина k определяется частотой, поэтому его компоненты не являются независимыми. При отражении от плоскости z = 0 нормальная компонента k z задаётся тангенциальными компонентами k x , k y: k z = Каждая плоская волна, входящая в состав падающего излучения, падает на границу раздела под своим углом и отражается независимо от других волн. Поле Ф(r ) отражённой волны возникает как суперпозиция всех отражённых плоских волн и выражается через пространственный спектр падающего излучения A(k x , k y )и коэф. отражения R(k x , k y):

Интегрирование распространяется на область сколь угодно больших значений k x и k y . Если пространственный спектр падающего излучения содержит (как при отражении сферич. волны) компоненты с k x (или k y ), большими, то в формировании отражённой волны помимо волн с действительными k z принимают участие также неоднородные волны, для к-рых k, - чисто мнимая величина. Этот подход, предложенный в 1919 Г. Вейлем (Н. Weyl) и получивший своё дальнейшее развитие в представлениях фурье-оптики, даёт последоват. описание отражения волны произвольной формы от плоской грашщы раздела.
При рассмотрении О. з. возможен также лучевой подход, к-рый основан на принципах геометрической акустики . Падающее излучение рассматривается как совокупность лучей, взаимодействующих с границей раздела. При этом учитывается, что падающие лучи не только отражаются и преломляются обычным образом, подчиняясь законам Снелля, но и что часть лучей, падающих на поверхность раздела под определёнными углами, возбуждает т. н. боковые волны, а также вытекающие поверхностные волны (Рэлея и др.) или вытекающие волноводные моды (Лэмба волны и др.). Распространяясь вдоль поверхности раздела, такие волны вновь переизлучаются в среду и участвуют в формировании отражённой волны. Для практики осн. значение имеет отражение сферич. волн, коллимнрованных акустпч. пучков конечного сечения и фокусированных звуковых пучков.

Отражение сферических волн . Картина отражения сферич. волны, создаваемой в жидкости I точечным источником О , зависит от соотношения между скоростями звука с 1 и с 2 в соприкасающихся жидкостях I и II (рис. 7). Если c t > с 2 , то критич. угол отсутствует и отражение происходит по законам геом. акустики. В среде I возникает отражённая сферич. волна: отражённые лучи пересекаются в точке О" . образуя мнимое изображение источника, а волновой фронт отражённой волны представляет собой часть сферы с центром в точке О" .

Рис. 7. Отражение сферической волны на границе раздела двух жидкостей: О и О" - действительный и мнимый источники; 1 - фронт отражённой сферической волны; 2 - фронт преломлённой волны; 3 - фронт боковой волны.

Когда c 2 >c l и имеется критич. угол в среде I помимо отражённой сферич. волны возникает ещё одна компонента отражённого излучения. Лучи, падающие на границу раздела под критич. углом возбуждают в среде II волну, к-рая распространяется со скоростью с 2 вдоль поверхности - раздела и переизлучается в среду I, формируя т. н. боковую волну. Её фронт образуют точки, до к-рых в один и тот же момент времени дошли лучи, вышедшие из точки О вдоль ОА и затем перешедшие снова в среду I в разл. точках границы раздела от точки А до точки С , в к-рой в этот момент находится фронт преломлённой волны. В плоскости чертежа фронт боковой волны представляет собой прямолинейный отрезок СВ , наклонённый к границе под углом и простирающийся до точки В , где он смыкается с фронтом зеркально отражённой сферич. волны. В пространстве фронт боковой волны представляет собой поверхность усечённого конуса, возникающего при вращении отрезка СВ вокруг прямой ОО" . При отражении сферич. волны в жидкости от поверхности твёрдого тела подобная же конич. волна образуется за счёт возбуждения на границе раздела вытекающей рэлеевской волны. Отражение сферич. волн - один из основных эксперим. методов геоакустики, сейсмологии, гидроакустики и акустики океана.

Отражение акустических пучков конечного сечения . Отражение коллимированных звуковых пучков, волновой фронт к-рых в осн. части пучка близок к плоскому, происходит для большинства углов падения так, будто отражается плоская волна. При отражении пучка, падающего из жидкости на границу раздела с твёрдым телом, возникает отражённый пучок, форма к-рого является зеркальным отражением распределения амплитуды в падающем пучке. Однако при углах падения, близких к продольному критич. углу или рэлеевскому углу наряду с зеркальным отражением происходит эфф. возбуждение боковой или вытекающей ролеевской волны. Поле отражённого пучка в этом случае является суперпозицией зеркально отражённого пучка и переизлучённых волн. В зависимости от ширины пучка, упругих и вязких свойств граничащих сред возникает либо латеральный (параллельный) сдвиг пучка в плоскости раздела (т. н. смещение Шоха) (рис. 8), либо существенное уширение пучка и появление тонкой

Рис. 8. Латеральное смещение пучка при отражении: 1 - падающий пучок; 2 - зеркально отражённый пучок; 3 - реально отражённый пучок.

структуры. При падении пучка под углом Рэлея характер искажений определяется соотношением между шириной пучка l и радиац. затуханием вытекающей рэлеевской волны

где - длина звуковой волны в жидкости, А - числовой множитель, близкий к единице. Если ширина пучка значительно больше длины радиац. затухания происходит лишь смещение пучка вдоль поверхности раздела на величину В случае узкого пучказа счёт переизлучения вытекающей поверхностной волны пучок существенно уширяется и перестаёт быть симметричным (рис. 9). Внутри области, занятой зеркально отражённым пучком, в результате интерференции возникает нулевой минимум амплитуды и пучок распадается на две части. Незеркальное отражение коллимиров. пучков возникает и на границе двух жидкостей при углах падения, близких к критическому, а также при отражении пучков от слоев или пластин.

Рис. 9. Отражение звукового пучка конечного сечения, падающего из жидкости Ж на поверхность твёрдого тела Т под углом Рэлея: 1 - падающий пучок; 2 - отражённый пучок; а - область нулевой амплитуды; б - область хвоста пучка.

В последнем случае незеркальный характер отражения обусловлен возбуждением в слое или пластине вытекающих волноводных мод. Существенную роль играют боковые и вытекающие волны при отражении фокусированных УЗ-пучков. В частности, эти волны используются в микроскопии акустической для формирования акустич. изображений и проведения количеств, измерений.

Лит.: 1) Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; 2) Ландау Л. Д., Лифшиц Е. М., Гидродинамика, 4 изд., М., 1988; 3) Бреховских Л. М., Годин О. А., Акустика слоистых сред, М., 1989; 4) Саgniаrd L., Reflexion et refraction des ondes seismiques progressives, P., 1939; 5) Ewing W. M., Jardetzky W. S., Press F., Elastic waves in layered media, N. Y. - , 1957, ch. 3; 6) Au1d B. A., Acoustic fields and waves in solids, v. 1 - 2, N. Y. - , 1973; 7) Веrtоni H. L., Таmir Т., Unified theory of Rayleigh-angle phenomena for acoustic beams at liquid-solid interfaces, "Appl. Phys.", 1973, v. 2, № 4, p. 157; 8) Mоtt G., Reflection and refraction coefficients at a fluid-solid interface, "J. Acoust. Soc. Amer.", 1971, v. 50, № 3 (pt 2), p. 819; 9) Вескеr F. L., Riсhardsоn R. L., Influence of material properties on Rayleigh critical-angle reflectivity, "J. Acoust. Soc. Amer.", 1972, v. 51. .V" 5 (pt 2), p. 1609; 10) Fioritо R., Ubera11 H., Resonance theory of acoustic reflection and transmission through a fluid layer, ".I. Acoust. Soc. Amer.", 1979, v. 65, № 1, p. 9; 11) Fiоrft о R., Madigоsky W., С berа 11 H., Resonance theory of acoustic waves interacting with an clastic plate. "J. Acoust. Soc. Amer.", 1979, v. 66, № 6, p. 1857; 12) Neubauer W. G., Observation of acoustic radiation from plane and curved surfaces, в кн.: Physical acoustics. Principles and methods, ed. by W. P. Mason, R. N. Thurston, v. 10, N. Y. - L., 1973, ch. 2.

ОТРАЖЕНИЕ ЗВУКА

ОТРАЖЕНИЕ ЗВУКА

Явление, возникающеепри падении звуковой на границу раздела двух упругих сред и состоящеев образовании волн, распространяющихся от границы раздела в ту же среду, рассеяние звука или дифракциязвука.
Падающая волна вызывает границыраздела сред, в результате к-рого и возникают отражённые и преломлённыеволны. Их структура и интенсивность должны быть таковы, чтобы по обе стороиыот границы раздела скорости частиц и упругие напряжения, действующие награницу раздела, были равны. Граничные условия на свободной поверхностисостоят в равенстве нулю упругих напряжений, действующих на эту .
Отражённые волны могут совпадать по типуполяризации с падающей волной, а могут иметь и др. поляризацию. В последнемслучае говорят о преобразовании, или конверсии, мод при отражении или преломлении. Отражение плоских волн .Особую роль играет отражение плоских волн, поскольку плоские волны, отражаясьи преломляясь, остаются плоскими, а произвольной формы можнорассматривать как отражение совокупности плоских волн. Кол-во возникающихотражённых и преломлённых волн определяется характером упругих свойствсред и числом акустич. ветвей, существующих в них. В силу граничных условийпроекции на плоскость раздела волновых векторов падающей, отражённых ипреломлённых волн равны между собой (рис. 1).

Рис. 1. Схема отражения и преломления плоенойзвуковой волны на плоской границе раздела.

Отсюда следуют законы отражения и преломления, i , отражённыхk r и преломлённых k t волн и нормаль NN" кгранице раздела лежат в одной плоскости (плоскости падения); 2) отношениясинусов углов падения отражения ипреломления кфазовым скоростям c i ,и соответствующихволн равны между собой:
(индексы и обозначаютполяризации отражённых и преломлённых волн). В изотропных средах, где направленияволновых векторов совпадают с направлениями звуковых лучей, законы отраженияи преломления принимают привычную форму закона Снелля. В анизотропных средахзаконы отражения определяют только направления волновых нормалей; как будутраспространяться преломлённые или отражённые лучи, зависит от направлениялучевых скоростей, соответствующих этим нормалям.
При достаточно малых углах падения всеотражённые и преломлённые волны представляют собой плоские волны, уносящиеэнергию падающего излучения от границы раздела. Однако, если для к.-л. преломлённой волны большескорости c i падающей волны, то для углов падения, большихт. н. критич. угла =arcsin, нормальнаякомпонента волнового вектора соответствующей преломлённой волны становится мнимой, 2. Однакопадение волны на границу раздела под углом, большим критического ,может и не приводить к полному отражению, поскольку падающего излученияможет проникать во 2-ю среду в виде волн другой поляризации.
Критич. угол существует и для отражённыхволн, если при О. з. происходит конверсия мод и волны ,возникающей в результате конверсии, больше скорости c i падающейволны. Для углов падения, меньших критич. угла часть падающей энергии уносится от границы в виде отражённой волны с поляризацией ;при такая волнаоказывается неоднородной, затухающей в глубь среды 1, и не принимает участияв переносе энергии от границы раздела. Напр., критич. угол = arcsin(c т /c L) возникает при отражении поперечнойакустич. волны Т от границы изотропного твёрдого тела и конверсииеё в продольную волну L (с т и C L - скорости поперечной и продольной звуковой волны соответственно).
Амплитуды отражённых и преломлённых волн в соответствии с граничными условиями линейным образом выражаютсячерез амплитуду А i падающей волны, подобно тому, какэти величины в оптике выражаются через амплитуду падающей эл.-магн. волныс помощью Френеля формул. Отражение плоской волны количественнохарактеризуется амплитудными коэф. отражения, представляющими собой отношенияамплитуд отражённых волн к амплитуде падающей:=Амплитудные коэф. отражения в общем случае комплексны: их модули определяютотношения абс. значении амплитуд, а фазы задают фазовые сдвиги отражённыхволн. Аналогично определяются и амплитудные коэф. прохождения Перераспределение энергии падающего излучения между отражёнными и преломлённымиволнами характеризуется коэф. отражения и прохождения по интенсивности, представляющими собой отношения нормальных к границераздела компонент средних по времени плотностей потоков энергии в отражённой(преломлённой) и в падающей волнах:

где - интенсивности звука в соответствующих волнах,и -плотности соприкасающихся сред. Баланс энергии, подводимой к границе разделаи уносимой от неё, сводится к балансу нормальных компонент потоков энергии:

Коэф. отражения зависят как от акустич. .Характер угл. зависимости определяется наличием критич. углов, а такжеуглов нулевого отражения ,при падении под к-рыми отражённая волна с поляризацией не образуется.

О. з. на границе двух жидкостей . Наиб. простая картина О. з. возникает на границе раздела двухжидкостей. Конверсия волн при этом отсутствует, и отражение происходитпо зеркальному закону, а коэф. отражения равен

где и c 1,2 - плотности и скорости звука в граничащих средах . и 2. Еслискорость звука для падающей волны больше скорости звука для преломлённой( с 1 c 2), то критич. угол отсутствует.

при нормальном падении волны на границураздела до значения R = - 1 при скользящем падении Если акустич. r 2 с 2 среды 2 больше импеданса среды 1 , то при угле падения

коэф. отражения обращается в нуль и всёпадающее полностью проходит в среду 2.
Когда с 1 <с 2 ,возникает критический угол =arcsin(c 1 /c 2). При <коэф. отражения - действительная величина; фазовый между падающейи отражённой волнами отсутствует. Величина коэф. отражения меняется отзначения R 0 при нормальном падении до R = 1 приугле падения, равном критическому. Нулевое отражение и в этом случае можетиметь место, если для акустич. импедансов сред выполняется обратное неравенство угол нулевого отражения по-прежнему определяется выражением (6). Для угловпадения, больших критического, имеет место полное внутр. отражение:и падающее излучение в глубь среды 2 не проникает. В среде 2, однако, поле отражённой волны формируетсяв результате интерференции двух полей: зеркально отражённой волны и волны, 1 неоднородной волной, возникшей в среде 2. Приотражении неплоских (напр., сферических) волн такая переизлучённая волнанаблюдается реально в эксперименте в виде т. н. боковой волны (см. Волны, разделОтражение и ).

О. з. от границы твёрдого тела . Характер отражения усложняется, если отражателем являетсятвёрдое тело. Когда с в жидкости меньше скоростейпродольного с L и поперечного с т звукав твёрдом теле, при отражении на границе жидкости с твёрдым телом возникаютдва критич. угла: продольный =arcsin ( с/с L )и поперечный =arcsin ( с/с т ). При этом , поскольку всегда с L > с т . При углахпадения коэф. отражения действителен (рис. 2). Падающее излучение проникает в твёрдоетело в виде как продольной, так и поперечной преломлённых волн. При нормальномпадении звука в твёрдом теле возникает только и значение R 0 определяется отношением продольных акустич. импедансов жидкости и твёрдого тела аналогично ф-ле (5) (- плотности жидкости и твёрдого тела).

Рис. 2. Зависимость модуля коэффициентаотражения звука | R | (сплошная линия) и его фазы (штрих-пунктирная линия) на границе жидкости и твёрдого тела от угла падения .

При коэф. и частьпадающего излученпя проникает в глубь твёрдого тела в виде преломлённойпоперечной волны. Поэтому для <<величина лишь при поперечная волна не образуется и |R| = 1. Участие неоднородной продольнойволны в формировании отражённого излучения обусловливает, как и на границедвух жидкостей, фазовый сдвиг у отражённой волны. При имеет местополное внутр. отражение:1. В твёрдом теле вблизи границы образуются лишь экспоненциально спадающиев глубь тела неоднородные волны. Фазовый сдвиг у отражённой волны для углов связан в основном с возбуждением на границе раздела вытекающей Рэлеяволны. Такая волна возникает на границе твёрдого тела с жидкостью приуглах падения, близких к углу Рэлея = arcsin ( с/с R), где C R - скоростьволны Рэлея на поверхности твёрдого тела. Распространяясь вдоль поверхностираздела, вытекающая волна полностью переизлучается в .
Если с с т . тополное внутр. отражение на границе жидкости с твёрдым телом отсутствует:падающее излучение проникает в при любом угле падения, покрайней мере в виде поперечной волны. Полное отражение возникает при падениизвуковой волны под критич. углом или при скользящем падении. При c>c L коэф. отражения действительный, О. з., распространяющегося в твёрдом теле. При распространении звука в изотропном твёрдом теле наиб. простойхарактер носит отражение сдвиговых волн, направление колебаний в к-рыхпараллельно плоскости раздела. Конверсия мод при отражении или преломлениитаких волн отсутствует. При падении на свободную границу или границу разделас жидкостью такая волна отражается полностью (R = 1) по закону зеркальногоотражения. На границе раздела двух изотропных твёрдых тел наряду с зеркальноотражённой волной в среде 2 образуется преломлённая волна с поляризацией, При падении поперечной волны, поляризованнойв плоскости падения, на свободную поверхность тела, на границе возникаеткак отражённая той же поляризации, так и продольная волна. ,меньших критического угла = = arcsin (c T /c L), коэф. отражения R T и R L - чисто действительные: отражённые волны уходят от границы точно вфазе (или в противофазе) с падающей волной. При отграницы уходит только зеркально отражённая поперечная волна; вблизи свободнойповерхности образуется неоднородная продольная волна.
Коэф. отражения становится комплексным, Если граница твёрдого тела находится вконтакте с жидкостью, то при отражении волн (продольной или поперечной, 2. Её также лежит в плоскостипадения.

О . з. на границе раздела анизотропныхсред . О. з. на границе раздела кристаллич. сред носит сложный характер. и отражённыхи преломлённых волн в этом случае сами являются ф-циями углов отражения и преломления (см. Кристаллоакустика); поэтому даже определение углов и по заданному углу падения сталкивается с серьёзными матем. трудностями. Если известны сечения поверхностейволновых векторов плоскостью падения, то используется графич. метод определенияуглов и концыволновых векторов k r и k t лежат наперпендикуляре NN", проведённом к границе раздела через конец волновоговектора k i падающей волны, в точках, где этот перпендикулярпересекает разл. полости поверхностей волновых векторов (рис. 3). Кол-воотражённых (или преломлённых) волн, реально распространяющихся от границыраздела в глубь соответствующей среды, определяется тем, со сколькими полостямипересекается перпендикуляр NN" . Если пересечение с к.-л. полостьюотсутствует, то это означает, что волна соответствующей поляризации оказываетсянеоднородной и энергию от границы не переносит. Перпендикуляр NN" можетпересекать одну и ту же полость в неск. точках (точки a 1 и а 2 на рис. 3). Из возможных положений волнового вектора k r (или k t )реальнонаблюдаемым волнам соответствуют лишь те, для к-рых вектор лучевой скорости,

Рис. 3. Графический метод определения угловотражения и преломления на границе раздела кристаллических сред 1 и 2.L, FT и ST - поверхности волновых векторов для квазипродольных, Как правило, отражённые (преломлённые)волны принадлежат разл. ветвям акустич. колебании. Однако в кристаллахсо значит. анизотропией, когда поверхность волновых векторов имеет вогнутыеучастки (рис. 4), возможно отражение с образованием двух отражённых илипреломлённых волн, принадлежащих одной и той же ветви колебаний.
На опыте наблюдаются конечные пучки звуковыхволн, направления распространения к-рых определяются лучевыми скоростями. NN" кгранице раздела. В частности, отражённый может лежать в плоскости паденияпо ту же сторону от нормали N, что и падающий луч. Предельным случаемтакой возможности является наложение отражённого пучка на падающий принаклонном падении последнего.

Рис. 4. Отражение акустической волны, падающейна свободную поверхность кристалла с образованием двух отраженных волнтой же поляризации: а - определение волновых векторов отражённыхволн (с g - векторы лучевой скорости); б - схемаотражения звуковых пучков конечного сечения.

Влияние затухания на характер О. з. .Коэф. отражения и прохождения не зависят от частоты звука, если затуханиезвука в обеих граничных средах пренебрежимо мало. Заметное затухание приводитне только к частотной зависимости коэф. отражения R, но и искажаетего зависимость от угла падения, в особенности вблизи критич. углов (рис.5, а ). При отражении от границы раздела жидкости с твёрдым теломэффекты затухания существенно меняют угловую зависимость R при углахпадения, близких к рэлеевскому углу (рис. 5,б). На границе сред с пренебрежимо малым затуханием притаких углах падения имеет место и |R |= 1 (кривая 1 на рис. 5, б). Наличие затухания приводит ктому, что |R |становится меньше 1, а вблизи образуется минимум |R |(кривые 2 - 4). По мере увеличениячастоты и соответствующего роста коэф. затухания глубина минимума увеличивается, f 0 , наз. частотой нулевогоотражения, мин. значение |R |не обратится в нуль (кривая 3, рис.5, б ). Дальнейший рост частоты приводит к уширенпю минимума (кривая 4 )ивлиянию эффектов затухания на О. з. практически для любых углов падения(кривая 5). Уменьшение амплитуды отражённой волны по сравнению самплитудой падающей не означает, что падающее излучение проникает в твёрдоетело. Оно связано с поглощением вытекающей волны Рэлея, к-рая возбуждаетсяпадающим излучением и участвует в формировании отражённой волны. Когдазвуковая частота f равна частоте f 0 , вся энергияпадающей волны диссипируется на границе раздела.

Рис. 5. Угловая зависимость |R |на границе вода - сталь с учётом затухания: а - общий характер угловойзависимости |R |; сплошная линия - без учёта потерь, штриховая линия- то же с учётом затухания; б - угловая зависимость | R вблизирэлеевского угла при различных значениях поглощения поперечных волн в стали на длине волны. Кривые 1 - 5 соответствуютувеличению этого параметра от значения 3 x 10 -4 (кривая 1 )до значения = 1 (кривая 5) за счёт соответствующего возрастания частоты падающего УЗ-излучения.

О. з. от слоев и пластин .О. з. от слоя или пластины носит резонансный характер. Отражённая и прошедшаяволны формируются в результате многократных переотражений волн на границахслоя. В случае жидкого слоя падающая волна проникает в слой под углом преломления определяемым из закона Снелля. За счёт переотражений в самом слое возникаютпродольные волны, распространяющиеся в прямом и обратном направлениях подуглом к нормали, проведённой к границам слоя (рис. 6, а ). Угол представляетсобой угол преломления, отвечающий углу падения на границу слоя. Если скорость звука в слое с 2 большескорости звука с 1 в окружающей жидкости, то системапереотражённых волн возникает лишь тогда, когда меньше угла полного внутр. отражения = arcsin (c 1 /c 2). Однако для достаточно тонких слоевпрошедшая волна образуется и при углах падения, больших критического. Вэтом случае коэф. отражения от слоя оказывается по абс. величине меньше1. Это связано с тем, что при в слое вблизи той его границы, на к-рую падает извне волна, возникает неоднороднаяволна, экспоненциально спадающая в глубь слоя. Если толщина слоя d меньшеили сравнима с глубиной проникновения неоднородной волны, то последняявозмущает противоположную границу слоя, в результате чего с неё излучаетсяв окружающую жидкость прошедшая волна. Это явление просачивания волны аналогичнопросачиванию частицы через в квантовой механике.
Коэф. отражения от слоя

где - нормальная компонента волнового вектора в слое, ось z - перпендикулярнаграницам слоя, R 1 и R 2 - коэф. О. з. представляет собой периодич. ф-цию звуковой частоты f и толщиныслоя d. При когда имеет место просачивание волны через слой, | R | при увеличении f или d монотонно стремится к 1.

Рис. 6. Отражение звуковой волны от жидкогослоя: а - схема отражения; 1 - окружающая жидкость; 2- слой; б - зависимость модуля коэффициента отражения |R| отугла падения .

Как ф-ция угла падения значение| R | имеет систему максимумов и минимумов (рис. 6, б). Еслипо обе стороны слоя находится одна и та же жидкость, то в точках минимума R= 0. Нулевое отражение возникает, когда набег фазы на толщине слояравен целому числу полупериодов

и волны, выходящие в верхнюю среду последвух последовательных переотражений, будут находиться в противофазе и взаимногасить друг друга. Наоборот, в нижнюю среду все переотражённые волны выходятс одной и той же фазой, и амплитуда прошедшей волны оказывается максимальной. пропускание имеет место, когдана толщине слоя укладывается целое число полуволн: d = где . =1,2,3,...,- длина звуковой волны в материале слоя; поэтому слои, для к-рых выполненоусловие (8), наз. полуволновымн. Соотношение (8) совпадает с условием существованиянормальной волны в свободном жидком слое. В силу этого полное пропусканиечерез слои возникает, когда падающее излучение возбуждает в слое ту илииную нормальную волну. За счёт контакта слоя с окружающей жидкостью нормальнаяволна является вытекающей: при своём распространении она полностью переизлучаетэнергию падающего излучения в нижнюю среду.
Когда жидкости по разные стороны от слояразличны, наличие полуволнового слоя никак не сказывается на падающей волне:коэф. отражения от слоя равен коэф. отражения от границы этих жидкостейпри их непо-средств. контакте. Помимо полуволновых слоев в акустике, каки в оптике, большое значение имеют т. н. четвертьволновые слои, толщинык-рых удовлетворяют условию ( п= 1,2,...).Подбирая соответствующим образом акустич. импеданс слоя, можно получитьнулевое отражение от слоя волны с заданной частотой f при определённомугле падения её на слой. Такие слои используются в качестве просветляющихакустических слоев.
Для отражения звуковой волны от бесконечнойтвёрдой пластины, погружённой в жидкость, характер отражения, описанныйвыше для жидкого слоя, в общих чертах сохранится. При переотражениях впластине дополнительно к продольным будут также возбуждаться сдвиговыеволны. Углы и ,под к-рыми распространяются соответственно продольные и поперечные волныв пластине, связаны с углом падения законом Снелля. Угл. и частотная зависимости|R | будут представлять собой, как и в случае отражения от жидкогослоя, системы чередующихся максимумов и минимумов. Полное пропускание черезпластину возникает в том случае, когда падающее излучение возбуждает вней одну из нормальных волн, представляющих собой вытекающие Лэмба волны. Резонансныйхарактер О. з. от слоя или пластины стирается по мере того, как уменьшаетсяотличие их акустич. свойств от свойств окружающей среды. Увеличение акустич. и |R(fd )|.

Отражение неплоских волн . Реально существуют только неплоские волны; их отражение может бытьсведено к отражению набора плоских волн. Монохроматич. волну с волновымфронтом произвольной формы можно представить в виде совокупности плоскихволн с одной и той же круговой частотой ,но с разл. направлениями волнового вектора k. Осн. характеристикой падающегоизлучения является его пространственный - набор амплитуд A (k)плоских волн, образующих в совокупности падающую волну. Абс. величина kопределяется частотой ,поэтому его не являются независимыми. При отражении от плоскости z= 0 нормальная компонента k z задаётся тангенциальнымикомпонентами k x , k y: k z =Каждая , входящая в состав падающего излучения, падает награницу раздела под своим углом и отражается независимо от других волн. Поле Ф(r ) отражённой волнывозникает как суперпозиция всех отражённых плоских волн и выражается черезпространственный спектр падающего излучения A(k x , k y )икоэф. отражения R(k x , k y):

Интегрирование распространяется на областьсколь угодно больших значений k x и k y . Еслипространственный спектр падающего излучения содержит (как при отражениисферич. волны) компоненты с k x (или k y ),большими ,то в формировании отражённой волны помимо волн с действительными k z принимают участие также неоднородные волны, для к-рых k, - чистомнимая величина. Этот подход, предложенный в 1919 Г. Вейлем (Н. Weyl) иполучивший своё дальнейшее развитие в представлениях фурье-оптики, даётпоследоват. описание отражения волны произвольной формы от плоской грашщыраздела.
При рассмотрении О. з. возможен такжелучевой подход, к-рый основан на принципах геометрической акустики. Падающееизлучение рассматривается как совокупность лучей, взаимодействующих с границейраздела. При этом учитывается, что падающие лучи не только отражаются ипреломляются обычным образом, подчиняясь законам Снелля, но и что частьлучей, падающих на поверхность раздела под определёнными углами, возбуждаетт. н. боковые волны, а также вытекающие (Рэлея и др.)или вытекающие волноводные (Лэмба волны и др.). Распространяясь вдольповерхности раздела, такие волны вновь переизлучаются в среду и участвуютв формировании отражённой волны. Для практики осн. значение имеет отражениесферич. волн, коллимнрованных акустпч. пучков конечного сечения и фокусированныхзвуковых пучков.

Отражение сферических волн . Картина отражения сферич. волны, создаваемой в жидкости I точечнымисточником О, зависит от соотношения между скоростями звука с 1 и с 2 в соприкасающихся жидкостях I и II (рис. 7). Еслиc t > с 2 , то критич. угол отсутствует и отражениепроисходит по законам геом. акустики. В среде I возникает отражённая сферич. О". образуя мнимое изображениеисточника, а отражённой волны представляет собой часть сферыс центром в точке О".

Рис. 7. Отражение сферической волны награнице раздела двух жидкостей: О и О" - действительный имнимый источники; 1 - фронт отражённой сферической волны; 2 - фронт преломлённой волны; 3 - фронт боковой волны.

Когда c 2 l иимеется критич. угол в среде I помимо отражённой сферич. волны возникает ещё одна компонентаотражённого излучения. Лучи, падающие на границу раздела под критич. углом возбуждают в среде II волну, к-рая распространяется со скоростью с 2 вдоль поверхности - раздела и переизлучается в среду I, формируя т. н. О вдоль ОА и затемперешедшие снова в среду I в разл. точках границы раздела от точки . доточки С, в к-рой в этот момент находится фронт преломлённой волны. СВ, наклонённый к границе под углом и простирающийся до точки В, где он смыкается с фронтом зеркальноотражённой сферич. волны. В пространстве фронт боковой волны представляетсобой поверхность усечённого конуса, возникающего при вращении отрезка СВ вокругпрямой ОО". При отражении сферич. волны в жидкости от поверхноститвёрдого тела подобная же конич. волна образуется за счёт возбуждения награнице раздела вытекающей рэлеевской волны. Отражение сферич. волн - одиниз основных эксперим. методов геоакустики, сейсмологии, гидроакустики иакустики океана.

Отражение акустических пучков конечногосечения . Отражение коллимированных звуковых пучков, волновойфронт к-рых в осн. части пучка близок к плоскому, происходит для большинствауглов падения так, будто отражается плоская волна. При отражении пучка, или рэлеевскому углу наряду с зеркальным отражением происходит эфф. боковой иливытекающей ролеевской волны. Поле отражённого пучка в этом случае являетсясуперпозицией зеркально отражённого пучка и переизлучённых волн. В зависимостиот ширины пучка, упругих и вязких свойств граничащих сред возникает либолатеральный (параллельный) сдвиг пучка в плоскости раздела (т. н. смещениеШоха) (рис. 8), либо существенное уширение пучка и появление тонкой

Рис. 8. Латеральное смещение пучка приотражении: 1 - падающий пучок; 2 - зеркально отражённый пучок;3- реально отражённый пучок.

структуры. При падении пучка под угломРэлея характер искажений определяется соотношением между шириной пучка . ирадиац. затуханием вытекающей рэлеевской волны

где - длина звуковой волны в жидкости, А - числовой множитель, близкийк единице. Если ширина пучка значительно больше длины радиац. затухания происходит лишь смещение пучка вдоль поверхности раздела на величину В случае узкого пучка засчёт переизлучения вытекающей поверхностной волны пучок существенно уширяетсяи перестаёт быть симметричным (рис. 9). Внутри области, занятой зеркальноотражённым пучком, в результате интерференции возникает нулевой минимумамплитуды и пучок распадается на две части. Незеркальное отражение коллимиров.

Рис. 9. Отражение звукового пучка конечногосечения, падающего из жидкости Ж на поверхность твёрдого тела Т под угломРэлея: 1 - падающий пучок; 2 - отражённый пучок; а - областьнулевой амплитуды; б - область хвоста пучка.

В последнем случае незеркальный характеротражения обусловлен возбуждением в слое или пластине вытекающих волноводныхмод. Существенную роль играют боковые и вытекающие волны при отражениифокусированных УЗ-пучков. В частности, эти волны используются в микроскопииакустической для формирования акустич. изображений и проведения количеств, Лит.: 1) Бреховских Л. М., Волныв слоистых средах, 2 изд., М., 1973; 2) Ландау Л. Д., Лифшиц Е. М., Гидродинамика,4 изд., М., 1988; 3) Бреховских Л. М., Годин О. А., Акустика слоистых сред, В. М. Левин.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .



Звук распространяется от звучащего тела равномерно во все стороны, если на его пути нет никаких препятствий. Но не всякое препятствие может ограничить его распространение. От звука нельзя загородиться небольшим листом картона, как от пучка света. Звуковые волны, как и всякие волны, способны огибать препятствия, «не замечать» их, если их размеры меньше, чем длина волны. Длина слышимых в воздухе звуковых волн колеблется от 15 м до 0,015 м. Если у препятствий на их пути меньшие размеры (например, у древесных стволов в редколесье), то волны их просто огибают. Препятствие же больших размеров (стена дома, скала) отражает звуковые волны по тому же закону, что и световые: угол падения равен углу отражения. Эхо - это отражение звука от препятствий.

Своеобразно переходит звук из одной среды в другую. Явление это довольно сложное, но оно подчиняется общему правилу: звук не переходит из одной среды в другую, если их плотности резко отличны, например, из воды в воздух. Достигая границы этих сред, он почти полностью отражается. Очень незначительная часть его энергии уходит на вибрацию поверхностных слоев другой среды. Погрузив голову под самую поверхность реки, вы еще услышите громкие звуки, на глубине же в 1 м уже ничего не услышите. Рыбы не слышат звук, раздающийся над поверхностью моря, но звук от тела, вибрирующего в воде, они слышат хорошо.

Через тонкие стенки звук слышен потому, что он заставляет их колебаться, и они как бы воспроизводят звук уже в другой комнате. Хорошие звукоизоляционные материалы - вата, ворсистые ковры, стены из пенобетона или пористой сухой штукатурки - как раз тем и отличаются, что в них очень много поверхностей раздела между воздухом и твердым телом. Проходя через каждую из таких поверхностей, звук многократно отражается. Но, кроме того, и сама среда, в которой звук распространяется, поглощает его. Один и тот же звук слышен лучше и дальше в чистом воздухе, чем в тумане, где его поглощают поверхности раздела между воздухом и капельками воды.

По-разному поглощаются в воздухе звуковые волны различной частоты. Сильнее - звуки высокие, меньше - низкие, такие, например, как бас. Именно поэтому пароходный гудок издает такой низкий звук (частота его не более 50 гц): низкий звук слышен на большем расстоянии. Большой колокол в Московском Кремле, когда он еще висел на колокольне «Иван Великий», был слышен за 30 верст - он гудел тоном примерно в 30 гц (фа субоктавы). Еще меньше поглощаются инфразвуки, особенно в воде. Рыбы слышат их за десятки и сотни километров. А вот ультразвук поглощается очень быстро: ультразвук с частотой в 1 Мгц ослабляется в воздухе вдвое на расстоянии 2 см, тогда как звук в 10 кгц ослабляется вдвое на 2200 м.



Энергия звуковой волны

Хаотическое движение частиц вещества (в том числе и молекул воздуха) называют тепловым. Когда в воздухе распространяется звуковая волна, его частицы приобретают, кроме теплового, еще и дополнительное движение - колебательное. Энергию для такого движения дает частицам воздуха вибрирующее тело (источник звука); пока оно колеблется, энергия беспрерывно передается от него в окружающий воздух. Чем дальше пройдет звуковая волна, тем слабее она становится, тем меньше в ней энергии. То же самое происходит со звуковой волной и в любой другой упругой среде - в жидкости, в металле.

Звук распространяется равномерно во все стороны, и в каждый момент слои сжатого воздуха, возникшие от одного импульса, образуют как бы поверхность шара, в центре которого находится звучащее тело. Радиус и поверхность такого «шара» беспрерывно растут. Одно и то же количество энергии приходится на все большую и большую поверхность «шара». Поверхность шара пропорциональна квадрату радиуса, поэтому количество энергии звуковой волны, проходящей, допустим, через квадратный метр поверхности, обратно пропорционально квадрату расстояния от звучащего тела. Следовательно, на расстоянии звук становится слабее. Русский ученый Н. А. Умов ввел в науку понятие поток плотности энергии. Величиной потока энергии удобно измерять и силу (интенсивность) звука. Поток плотности энергии в звуковой волне - это количество энергии, которое проходит за секунду через единицу поверхности, перпендикулярной направлению волны. Чем больше поток плотности энергии, тем больше сила звука. Измеряется поток энергии в ваттах на квадратный метр (вт/м²).

Каждый из вас знаком с таким звуковым явлением, как эхо. Эхо образуется в результате отражения звука от различных преград - стен большого пустого помещения, леса, сводов высокой арки в здании.

Эхо слышно лишь в том случае, когда отражённый звук воспринимается отдельно от произнесённого. Для этого нужно, чтобы промежуток времени между воздействием этих двух звуков на барабанную перепонку уха составлял не менее 0,06 с.

Определим, через какое время после произнесённого вами короткого возгласа отражённый от стены звук достигнет вашего уха, если вы стоите на расстоянии 3 м от этой стены.

Звук должен пройти расстояние до стены и обратно, т. е. 6 м, распространяясь со скоростью 340 м/с. На это потребуется время t = s/v, т.е. t = 6м /340м/с = 0,02 с.

Интервал между двумя воспринимаемыми вами звуками - произнесённым и отражённым - значительно меньше того, который необходим, чтобы услышать эхо. Кроме того, образованию эха в комнате препятствует находящаяся в ней мебель, шторы и другие предметы, частично поглощающие отражённый звук. Поэтому в таком помещении речь людей и другие звуки не искажаются эхом и звучат чётко и разборчиво.

Большие полупустые помещения с гладкими стенами, полом и потолком обладают свойством очень хорошо отражать звуковые волны. В таком помещении благодаря набеганию предшествующих звуковых волн на последующие получается наложение звуков, и образуется гул. Для улучшения звуковых свойств больших залов и аудиторий их стены часто облицовывают звукопоглощающими материалами.

На свойстве звука отражаться от гладких поверхностей основано действие рупора - расширяющейся трубы обычно круглого или прямоугольного сечения. При использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счёт чего мощность звука увеличивается и он распространяется на большее расстояние.

Несколько знаменитых многократных эхо: в замке Вудсток в Англии эхо отчетливо повторяет 17 слогов. Развалины замка Деренбург возле Гальберштадта давали 27-сложное эхо, которое, однако, умолкло с тех пор, как одна стена была взорвана. Скалы, раскинутые в форме круга возле Адерсбаха в Чехословакии, повторяют в определенном месте, троекратно 7 слогов; но в нескольких шагах от этой точки даже звук выстрела не дает никакого эхо. Весьма многократное эхо наблюдалось в одном (ныне несуществующем) замке близ Милана: выстрел, произведенный из окна флигеля, повторялся эхом 40-50 раз, а громкое слово - раз 30… В частном случае эхо составляет сосредоточение звука посредством отражения его от вогнутых кривых поверхностей. Так, если источник звука помещен в одном из двух фокусов эллипсоидального свода, то звуковые волны собираются в другом его фокусе. Таким образом объясняется, например, знаменитое "ухо Диониса " в Сиракузах - грот или углубление в стене, из которого каждое слово, произнесенное заключенными в нем, могло быть услышано в некотором удаленном от него месте. Подобным акустическим свойством обладала одна церковь в Сицилии, где в известном месте можно было слышать произносимые шепотом слова в исповедальне. Известны также в этом отношении храм мормонов у Соленого озера в Америке и гроты в монастырском парке Олива около Данцига. В Олимпии (Греция) в храме Зевса сохранился до наших дней «Портик Эхо». В нем голос повторяется 5…7 раз. В Сибири на реке Лене севернее Киренска есть удивительное место. Рельеф скалистых берегов там таков, что эхо гудков идущих по реке теплоходов может повторяться до 10 и даже 20 раз (при благоприятных погодных условиях). Такое эхо подчас воспринимается как постепенно затухающий звук, а иногда как звук, порхающий с различных направлений. Многократное эхо можно слышать также на Телецком озере в горах Алтая. Это озеро имеет 80 км в длину и всего несколько километров в ширину; его берега высоки и круты, покрыты лесами. Выстрел из ружья или резкий громкий крик порождает здесь до 10 эхо-сигналов, которые звучат в течение 10…15 с. Любопытно, что часто звуковые отклики представляются наблюдателю приходящими откуда – то сверху, как если бы эхо было подхвачено прибрежными возвышенностями.

В зависимости от рельефа местности, места и ориентации наблюдателя, погодных условий, времени года и суток эхо изменяет свою громкость, тембр, длительность; меняется число его повторений. Кроме того, может измениться и частота звукового отклика; она может оказаться более высокой или, напротив, более низкой по сравнению с частотой исходного звукового сигнала.

Не так просто отыскать место, где эхо отчетливо слышно и один раз. В России, впрочем, найти подобные места сравнительно легко. Есть много равнин, окруженных лесами, много полян в лесах; стоит громко крикнуть на такой поляне, чтобы от стены леса донеслось более или менее отчетливое эхо.

По УМК и др..

Глава 2: Звуковые явления

Тема:

Тип урока : комбинированный

Цель урока : изучение характеристик звука и явления отражения звука

Цель урока (учащиеся): приобретение знаний о характеристиках звука и отражении звука

Задачи урока : - формировать знания о физических (амплитуда, частота) и физиологических (высота, громкость, тембр) характеристиках звука;

Развивать личностные, регулятивные, коммуникативные универсальные учебные действия;

Воспитывать познавательный интерес, любознательность, положительную мотивацию к обучению.

Карта обеспеченности урока

Учебный элемент

Используемое демонстрационное оборудование

Используемые бумажные источники

Используемые электронные ресурсы

Громкость и высота звука. Отражение звука.

УМК, «Физика 7», (учебник, рабочая тетрадь)

Электронное приложение к УМК, «Физика 7»

Две пары камертонов с одинаковой и разной частотой, молоточек резиновый, штатив, две бусинки на нити, волновая ванна с принадлежностями, громкоговоритель, микрофон, экран

Планируемые метапредметные результаты:

Представлять информацию в словесной, графической форме.

Приведите примеры различных звуков. Укажите источник звука в каждом случае.

Как образуется звуковая волна?

Что вам известно о скорости звуковых волн в различных средах?

Почему скорость звука в воде больше, чем в воздухе?

Познавательная деятельность: систематизация и обобщение знаний о звуковых явлениях, источниках звука, распространении и скорости звука

Регулятивная деятельность: контроль самого себя и своих одноклассников в процессе воспроизведения и коррекции опорных знаний

3. Актуализация знаний

Учитель . Человек живёт в мире звуков. Мы слышим голоса людей, пение птиц, звуки музыкальных инструментов, шум леса, звук работающих машин. Что общего между этими звуками и чем они отличаются?

Ученик. Общим является то, что все звуки издаются колеблющимися телами (голосовые связки человека, птицы, струны музыкальных инструментов, ветки деревьев и т. д.), а различаться эти звуки могут, например, своей громкостью.

Учитель. Как вы думаете, от чего зависит громкость звука? Чем она определяется? Вы хотели бы узнать ответ на этот вопрос? Очень хорошо. Мы ответим на интересующий нас вопрос, изучив характеристики звука. Запишите тему урока “ Громкость и высота звука. Отражение звука ”. Сегодня мы познакомимся с физическими и физиологическими характеристиками звука, научимся отличать низкие звуки от высоких, громкие от тихих, узнаем, что такое тембр, а также изучим закон отражения звуковых волн.

4 этап. Изучение нового учебного материала

Цели и задачи для учителя

Цели и задачи для уч-ся

Методы и приёмы

Формирование УУД

Предметные задачи: продолжить формирование знаний о звуковых явлениях, ввести понятие громкости и высоты звука, сформулировать закон отражения звуковых волн, с помощью эксперимента доказать зависимость громкости звука от амплитуды, а высоты – от частоты колебаний.

Метапредметные : развивать анализ, синтез, логическое мышление. Обеспечить восприятие, осмысление и первичное запоминание изучаемых физических закономерностей.

Личностные: обеспечить мотивацию, актуализацию субъектного опыта

Коммуникативные: учить вести диалог, слушать и слышать собеседника

Регулятивные: Учить контролировать понимание материала

Воспроизводить:

Формулировку закона отражения звука;

Применять закон отражения при решении качественных задач;

Объяснять зависимость громкости звука от амплитуды колебаний, а высоты – от частоты.

Запомнить, что все звуки различаются по громкости, высоте и тембру. Научиться сравнивать звуки различные по громкости и высоте.

Объяснять зависимость громкости звука от амплитуды, а высоты – от частоты на основе эксперимента. Иметь представление о влиянии звуков на различные физиологические процессы

Приводить примеры звуков различной громкости и высоты, возникающие в природе.

Понимать, что отражение звука подчиняется закону отражения, а громкость и высота звука определяется его характеристиками: амплитудой и частотой.

Частично-поисковый метод обучения. Использование знаний ученика, имеющиеся у него на момент конкретного занятия, для усвоения нового материал.

Познавательные: систематизация и обобщение знаний о звуковых явлениях, умение сравнивать, и группировать звуки на основе существенных признаков, ориентироваться в учебнике, определять тему.

Строить логические рассуждения и делать выводы.

Уметь оформлять свои мысли в устной и письменной форме.

Коммуникативные : отвечать на вопросы учителя, товарищей по классу, участвовать в диалоге, соблюдать нормы речевого этикета, слушать и понимать речь других.

Регулятивные:

осуществлять самоконтроль за качеством и уровнем освоения новых знаний

Личностные : выражать положительное отношение к процессу познания, желание узнать новое, проявлять внимание, работать в коллективе, высказывать свою точку зрения при объяснении примеров, приводимых одноклассниками.

4.1. Создание и решение проблемной ситуации путём эксперимента. Актуализация субъектного опыта

Учитель. Выясним, от чего зависит громкость звука? Проведём следующий эксперимент.

Демонстрация . Ударим молоточком по ножке камертона. Поднесём бусинку на нити к звучащему камертону. Что мы наблюдаем и почему?

Ученик . Бусинка отскакивает от камертона, потому что камертон издаёт звук, следовательно, ножка камертона колеблется.

Учитель . Как вы думаете, изменится ли удаление бусинки от камертона, если я ударю сильнее?

Ученик . Я думаю, чем сильнее ударим по камертону, тем сильнее (больше) будет отклоняться бусинка.

Учитель. Проверим наше предположение. (Демонстрация) Чем отличаются при этом звуки, издаваемые камертонами?

Ученик. Камертоны издают разные звуки. Чем сильнее ударим по камертону, тем с большей амплитудой будет колебаться ножка камертона, следовательно, будет громче звук.

Учитель . Зависимость громкости звука от амплитуды колебаний можно наглядно продемонстрировать с помощью камертона с пером (по рис. 137)

Графически эту зависимость можно представить в следующем виде:

Учитель. Громкость звука - это первая физиологическая характеристика звука, которая определяется амплитудой колебаний источника звука. Переходим ко 2 части нашего эксперимента. На демонстрационном столе находятся два камертона. В чём их внешнее различие?

Ученик : Они разного размера, у них разная масса.

Учитель. Демонстрация. Предлагаю продемонстрировать звучание этих камертонов и прокомментировать результат.

Ученик. Эти камертоны издают разные звуки. Один – низкий, другой - высокий. Я думаю, что это связано с их массой. При одинаковой силе удара ножки камертона будут колебаться с разной частотой.

Учитель . Чтобы проверить это предположение запишем колебания камертонов на закопченной пластине. Первый камертон имеет меньшую частоту и издает низкий звук, второй камертон издаёт более высокий звук, следовательно, чем больше частота колебаний, тем выше звук.

Графически это можно представить следующим образом:

Итак, высота звука – вторая физиологическая характеристика, которая определяется частотой колебаний.

Мы никогда не спутаем с вами звук трубы со звуком фортепиано. Голос своей мамы мы узнаем из тысячи голосов. Различать одни звуки от других нам помогает тембр звука.

Тембр - индивидуальная особенность сложной звуковой волны, он обусловлен тем, что звук состоит из ряда простых звуков разных частот, т. е. имеет определенную «окраску», это качество звука и называют тембром. Это еще одна физиологическая характеристика звука.

А сейчас, попробуйте назвать, какие музыкальные инструменты звучат? (Запись на компьютере)

(Ответы учащихся)

Учитель. Громкость, высоту и тембр называют физиологическими характеристиками звука потому, что они связаны с нашим восприятием. Физиологические характеристики звука связаны с физическими, которые позволяют различать громкие звуки от тихих, высокие от низких, звуки от разных источников. Какие же бывают физические характеристики звука?

Ученик. Физические характеристики звука - амплитуда и частота.

Учитель . А теперь познакомимся с одним из основных свойств звуковых волн. Звуковая волна, как и любая другая может отражаться и преломляться. Отражение волн от препятствий относится к числу очень распространенных явлений. Этот закон отражения является общим волновым законом, т. е. он справедлив для любых волн, в том числе и для звуковых, и для световых. Отражение волн от экрана пронаблюдаем на опыте (опыт по рис. 141) Опыт и наблюдения показывают, что отражение звука подчинено определенному закону: угол падения равен углу отражения.

Учитель. Выполним графическую интерпретацию опыта на доске и сделаем вывод о соотношении между углом падения и отражения

Ученик. Угол отражения равен углу падения.

Учитель. При распространении звуковых волн можно наблюдать такое явление как эхо. Оно объясняется свойством отражения волн от преграды.

В лесу, в горах, в помещениях можно иногда слышать отражение звука от какой-то преграды (лес, горы, стена). Если до нас доходят звуковые волны, последовательно отразившиеся от ряда препятствий, то получается многократное эхо. Раскаты грома имеют такое же происхождение! Это - многократное повторение очень сильного «треска» огромной электрической искры молнии.

На свойстве отражения звука основана эхолокация

С помощью эхолокации некоторые животные определяют расстояния. Например, дельфины, используя эхолокацию, с большой точностью определяют рельеф дна и местоположение своих собратьев или добычи. Инфразвук, посылаемый летучей мышью, отражается от потенциальной добычи и улавливается мышью. По времени полета звукового сигнала мышь очень точно определяет расстояние до предмета.

Эхолоты – специальные приборы для определения глубины моря – тоже используют явление отражения звука. Глубина моря иногда превышает 10 км, и обычным лотом (грузом, привязанным к веревке) измерить такую глубину невозможно. Эхолот издает сильный и короткий звуковой сигнал, а затем ловит отраженное от морского дна эхо.

https://pandia.ru/text/80/015/images/image010_21.jpg" width="252" height="189">

4.2. Самостоятельная работа учащихся.

В продолжение развития темы и усвоения новых знаний учащимся предлагается самостоятельно изучить материал, который находится у них на столах.

Учитель. Изучите дополнительный материал, рассмотрите рисунки, ответьте на вопросы и проведите взаимопроверку

1) Каковы причины снижения слуха?

2) Каковы нормы, определяющие громкость звука по САНПИНу?

3) Рассмотрите картинку. На сколько децибел громкость дискотеки превышает эти нормы?

Звуки, воспринимаемые человеческим ухом, являются одним из важнейших источников информации об окружающем мире. Ухо – один из наиболее сложных и тонких органов, оно воспринимает и очень слабые, и очень сильные звуки. Орган слуха всегда «бодрствует» даже ночью, во сне он постоянно подвергается внешним раздражителям, так как не обладает никакими защитными приспособлениями, сходными, например, с веками, предохраняющими глаза от света. Поэтому ухо человека надо беречь не только от механических повреждений, но и от громких звуков!

Современный шумовой дискомфорт вызывает у живых организмов болезненные реакции. Шум от пролетающего реактивного самолета, например, угнетающе действует на пчелу, она теряет способность ориентироваться. Этот же шум убивает личинки пчел, разбивает открыто лежащие яйца птиц в гнездах. При воздействии интенсивных звуков коровы дают меньше молока, куры реже несутся, птицы начинают усиленно линять, задерживается прорастание семян и даже наступает разрушение растительных клеток. Не случайно, например, деревья в городе даже в «спальных» районах погибают раньше, чем в естественных условиях.

В современных мегаполисах шум вырос в несколько раз. Если в 60 – 70 годы прошлого столетия уровень громкости на улицах не превышал 80 дБ, то в настоящее время он достигает 100 дБ и более. На многих оживленных магистралях даже ночью шум не бывает ниже 70 дБ, в то время как по санитарным нормам он должен не превышать 40 дБ.

В крупных городах России (Санкт-Петербург, Нижний Новгород, Красноярск, Екатеринбург, Магнитогорск и др.) на магистралях с интенсивным движением (до 6 – 8 тыс. автомобилей экипажей в час) фиксируется уровень шума в среднем 73 – 83 дБ, а максимальный – до 90 дБ и более.

5 этап. Первичная проверка понимания изученного материала

Цель: установить правильность и осознанность изученного материала, выявить пробелы, провести коррекцию пробелов в осмыслении материала

Методы и приёмы выполнения : подготовка учащимися своих вопросов, своих примеров наблюдения эха, звуков различной громкости и высоты в природе, решение качественных задач на закон отражения.

6. Этап закрепления учебного материала

Цель: обеспечить в ходе закрепления повышение уровня осмысления изученного материала, глубины понимания.

Для закрепления и углубления полученных знаний используется Рабочая тетрадь: № 000, 259, задания позволяют применить теоретические знания на практике,

7 этап. Задание на дом.

Цели для учителя

Цели для учащихся

Критерии успешного

выполнения д/з

Методы и приёмы выполнения

Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания

Д/ з: § 47-48, задание, Р. Т. № 000 - экспериментальное задание

позволяет учащимся развить свои творческие способности, работа с Э. П. - самим выбрать уровень сложности и оценить свои силы в изучении материала.

Знать физиологические и физические характеристики звука, правильно давать формулировку закона отражения, приводить примеры учета и применения отражения в природе и технике.

Три уровня домашнего задания: стандартный минимум, повышенный (подобрать примеры звуков различной высоты, встречающихся в живой природе),

творческий (выполнение задания 260 Р. Т.)

Задание творческого уровня предлагаются тем, кто считает возможной для себя самостоятельную творческую работу.

8 этап. Подведение итогов занятия и рефлексия

Цель: дать качественную оценку работы класса и отдельных учащихся; инициировать рефлексию учащихся по поводу мотивации своей деятельности и взаимодействия с учителем и одноклассниками

Учитель. Итак, подведём итоги нашего урока. Теперь мы знаем, что такое высота, громкость и тембр звука и какими физическими величинами они характеризуются, что отражение звука подчиняется определённой закономерности и может привести к наблюдению такого явления, как эхо, а так же познакомились с учетом и применением отражения звука в технике.

error: