Действительные рациональные числа обозначение. Числа. Действительные числа. Основные виды чисел

Это числа, которые используются при счете: 1, 2, 3... и т.д.

Ноль не является натуральным.

Натуральные числа принято обозначать символом N .

Целые числа. Положительные и отрицательные числа

Два числа отличающиеся друг от друга только знаком, называются противоположными , например, +1 и -1, +5 и -5. Знак "+" обычно не пишут, но предполагают, что перед числом стоит "+". Такие числа называются положительными . Числа, перед которыми стоит знак "-", называются отрицательными .

Натуральные числа, противоположные им и ноль называют целыми числами. Множество целых чисел обозначают символом Z .

Рациональные числа

Это конечные дроби и бесконечные периодические дроби. Например,

Множество рациональных чисел обозначается Q . Все целые числа являются рациональными.

Иррациональные числа

Бесконечная непериодическая дробь называется иррациональным числом. Например:

Множество иррациональных чисел обозначается J .

Действительные числа

Множество всех рациональных и всех иррациональных чисел называется множеством действительных (вещественных) чисел.

Действительные числа обозначаются символом R .

Округление чисел

Рассмотрим число 8,759123... . Округлить до целой части означает записать лишь ту часть числа, которая находится до запятой. Округлить до десятых означает записать целую часть и после запятой одну цифру; округлить до сотых - после запятой две цифры; до тысячных - три цифры и т.д.


Из огромного многообразия всевозможных множеств особый интерес представляют так называемые числовые множества , то есть, множества, элементами которых являются числа. Понятно, что для комфортной работы с ними нужно уметь их записывать. С обозначений и принципов записи числовых множеств мы и начнем эту статью. А дальше рассмотрим, как числовые множества изображаются на координатной прямой.

Навигация по странице.

Запись числовых множеств

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A , H , W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

  • N – множество всех натуральных чисел;
  • Z – множество целых чисел;
  • Q – множество рациональных чисел;
  • J – множество иррациональных чисел;
  • R – множество действительных чисел;
  • C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q , это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A .

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z , таким образом, числовое множество N включено в Z , это обозначается как N⊂Z . Также можно использовать запись Z⊃N , которая означает, что множество всех целых чисел Z включает множество N . Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в , что согласуется с общими правилами описания множеств . Например, множество, состоящее из трех чисел 0 , −0,25 и 4/7 можно описать как {0, −0,25, 4/7} .

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99 включительно можно записать как {3, 5, 7, …, 99} .

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …} .

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства} . Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3 . Это же множество можно описать как {11,19, 27, …} .

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N , Z , R , и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10 , −9 , −8,56 , 0 , все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞) . В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞) . Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0} , [−5, −1,3] и (7, +∞) .

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими элементами [−10, 0] и (−5, 3) есть полуинтервал [−10, 3) . Это же относится и к объединению числовых промежутков с одинаковыми граничными числами, например, объединение (3, 5]∪(5, 7] представляет собой множество (3, 7] , на этом мы отдельно остановимся, когда будем учиться находить пересечение и объединение числовых множеств .

Изображение числовых множеств на координатной прямой

На практике удобно пользоваться геометрическими образами числовых множеств – их изображениями на . Например, при решении неравенств , в которых необходимо учитывать ОДЗ, приходится изображать числовые множества, чтобы найти их пересечение и/или объединение. Так что полезно будет хорошо разобраться со всеми нюансами изображения числовых множеств на координатной прямой.

Известно, что между точками координатной прямой и действительными числами существует взаимно однозначное соответствие, что означает, что сама координатная прямая представляет собой геометрическую модель множества всех действительных чисел R . Таким образом, чтобы изобразить множество всех действительных чисел, надо начертить координатную прямую со штриховкой на всем ее протяжении:

А часто даже не указывают начало отсчета и единичный отрезок:

Теперь поговорим про изображение числовых множеств, представляющих собой некоторое конечное число отдельных чисел. Для примера, изобразим числовое множество {−2, −0,5, 1,2} . Геометрическим образом данного множества, состоящего из трех чисел −2 , −0,5 и 1,2 будут три точки координатной прямой с соответствующими координатами:

Отметим, что обычно для нужд практики нет необходимости выполнять чертеж точно. Часто достаточно схематического чертежа, что подразумевает необязательное выдерживание масштаба, при этом важно лишь сохранять взаимное расположение точек относительно друг друга: любая точка с меньшей координатой должна быть левее точки с большей координатой. Предыдущий чертеж схематически будет выглядеть так:

Отдельно из всевозможных числовых множеств выделяют числовые промежутки (интервалы, полуинтервалы, лучи и т.д.), что представляют их геометрические образы, мы подробно разобрались в разделе . Здесь не будем повторяться.

И остается остановиться лишь на изображении числовых множеств, представляющих собой объединение нескольких числовых промежутков и множеств, состоящих из отдельных чисел. Здесь нет ничего хитрого: по смыслу объединения в этих случаях на координатной прямой нужно изобразить все составляющие множества данного числового множества. В качестве примера покажем изображение числового множества (−∞, −15)∪{−10}∪[−3,1)∪ {log 2 5, 5}∪(17, +∞) :

И остановимся еще на достаточно распространенных случаях, когда изображаемое числовое множество представляет собой все множество действительных чисел, за исключением одной или нескольких точек. Такие множества частенько задаются условиями типа x≠5 или x≠−1 , x≠2 , x≠3,7 и т.п. В этих случаях геометрически они представляют собой всю координатную прямую, за исключением соответствующих точек. Иными словами, из координатной прямой нужно «выколоть» эти точки. Их изображают кружочками с пустым центром. Для наглядности изобразим числовое множество, соответствующее условиям (это множество по сути есть ):

Подведем итог. В идеале информация предыдущих пунктов должна сформировать такой же взгляд на запись и изображение числовых множеств, как и взгляд на отдельные числовые промежутки: запись числового множества сразу должна давать его образ на координатной прямой, а по изображению на координатной прямой мы должны быть готовы с легкостью описать соответствующее числовое множество через объединение отдельных промежутков и множеств, состоящих из отдельных чисел.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

Понятие действительного числа: действительное число - (вещественное число), всякое неотрицательное или отрицательное число либо нуль. С помощью действительных чисел выражают измерения каждой физической величины .

Вещественное , или действительное число возникло из необходимости измерений геометрической и физической величин мира. Кроме того, для проведения операций извлечения корня, вычисления логарифма, решения алгебраических уравнений и т.д.

Натуральные числа образовались с развитием счета, а рациональные с потребностью управлять частями целого, то вещественные числа (действительные) используются для измерений непрерывных величин. Т.о., расширение запаса чисел, которые рассматриваются, привело к множеству вещественных чисел, которое кроме рациональных чисел состоит из других элементов, называемых иррациональные числа .

Множество действительных чисел (обозначается R ) - это множества рациональных и иррациональных чисел собранные вместе.

Действительные числа делят на рациональные и иррациональные .

Множество вещественных чисел обозначают и зачастую называют вещественной или числовой прямой . Вещественные числа состоят из простых объектов: целых и рациональных чисел .

Число, которое возможно записать как отношение, где m - целое число, а n - натуральное число, является рациональным числом .

Всякое рациональное число легко представить как конечную дробь либо бесконечную периодическую десятичную дробь.

Пример ,

Бесконечная десятичная дробь , это десятичная дробь, у которой после запятой есть бесконечное число цифр.

Числа, которые нельзя представить в виде , являются иррациональными числами .

Пример:

Всякое иррациональное число легко представить как бесконечную непериодическую десятичную дробь.

Пример ,

Рациональные и иррациональные числа создают множество действительных чисел. Всем действительным числам соответствует одна точка координатной прямой, которая называется числовая прямая .

Для числовых множеств используются обозначения:

  • N - множество натуральных чисел;
  • Z - множество целых чисел;
  • Q - множество рациональных чисел;
  • R - множество действительных чисел.

Теория бесконечных десятичных дробей.

Вещественное число определяется как бесконечная десятичная дробь , т.е.:

±a 0 ,a 1 a 2 …a n …

где ± есть один из символов + или −, знак числа,

a 0 — целое положительное число,

a 1 ,a 2 ,…a n ,… — последовательность десятичных знаков, т.е. элементов числового множества {0,1,…9}.

Бесконечную десятичную дробь можно объяснить как число, которое на числовой прямой находится между рациональными точками типа:

±a 0 ,a 1 a 2 …a n и ±(a 0 ,a 1 a 2 …a n +10 −n) для всех n=0,1,2,…

Сравнение вещественных чисел как бесконечных десятичных дробей происходит поразрядно. Например , предположим даны 2 положительны числа:

α =+a 0 ,a 1 a 2 …a n …

β =+b 0 ,b 1 b 2 …b n …

Если a 0 0, то α<β ; если a 0 >b 0 то α>β . Когда a 0 =b 0 переходим к сравнению следующего разряда. И т.д. Когда α≠β , значит после конечного количества шагов встретится первый разряд n , такой что a n ≠b n . Если a n n , то α<β ; если a n >b n то α>β .

Но при этом нудно обратить внимание на то, что число a 0 ,a 1 a 2 …a n (9)=a 0 ,a 1 a 2 …a n +10 −n . Поэтому если запись одного из сравниваемых чисел, начиная с некоторого разряда это периодическая десятичная дробь, у которой в периоде стоит 9, то её нужно заменить на эквивалентную запись, с нулем в периоде.

Арифметические операции с бесконечными десятичными дробями это непрерывное продолжение соответствующих операций с рациональными числами. Например , суммой вещественных чисел α и β является вещественное число α+β , которое удовлетворяет таким условиям:

a′,a′′,b′,b′′ Q(a′ α a′′) (b′ β b′′) (a′+b′ α + β a′′+b′′)

Аналогично определяет операция умножения бесконечных десятичных дробей.

*Привыкшие к требовательности мисс Дэвис ученики, появились в классе за несколько минут до конца перемены. Никто не спешил доставать пергаменты и перья, зная, что с началом лекции те сами появятся на партах. Вместо этого студенты принялись наблюдать за тем, как мисс Дэвис при помощи магии развешивает на доске многочисленные графики, таблицы и диаграммы, один вид которых мог нагнать уныние и тоску*
- Вижу, многие из вас уже успели ознакомиться с материалом лекции - *коротко поприветствовав собравшихся, продолжила чародейка* - Наша с вами задача на сегодня – сделать так, чтобы этот материал был вами не только увиден, но и понят - *звон школьного колокола прервал Эйн и та досадливо поморщилась*
//Материала, как обычно, много, а времени, как всегда, не хватает. И на Нумерологию в школьной программе отведено так мало часов//
- Не будем терять время и начнем прямо сейчас.
*Ужас, застывший на лицах некоторых студентов, явственно намекал на то, что они сейчас с удовольствием занялись бы не громоздкими и сложными вычислениями, а чем-нибудь другим. Но профессор была неумолима*
- На прошлых занятиях мы познакомились с различными алфавитными нумерациями. А с сегодняшнего дня начнем знакомиться с их применением в нумерологических вычислениях. И начнем с тех из них, которые были разработаны нумерологами Древней Греции.
- Например, с психоматрицы Пифагора? - *уточнила рыжеволосая старшекурсница за первой партой*
- Не путайте, мисс Гаррет - *предупредила ее профессор* - Психоматрица и квадрат Пифагора – это совершенно разные вещи. В основе психоматрицы лежит квадрат Пифагора, а не наоборот. Она появилась гораздо позже и была разработана русскими нумерологами вдали от территории современной Греции. Методики расчета и анализа результатов в обоих случаях различаются так сильно, что говорить о слиянии психоматрицы и квадрата Пифагора не приходится. И, раз уж мы заговорили о Пифагоре, то с него, пожалуй, и начнем. Для тех, кто не помнит, как выглядит этот древний ученый муж, напомню – именно так - *повинуясь легкому взмаху палочки волшебницы, на доску отправился довольно большой портрет*

Он родился в 570 году до нашей эры на острове Самос, в семье Мнесарха и Партениды. О том, чем же на самом деле занимались родители Пифагора, точных сведений нет. Одни называют Мнесарха самосским камнерезом, другие – финикийским купцом из Тира, переехавшим на Самос и женившимся на знатной гречанке. Рождение Пифагора было предсказано дельфийской прорицательницей Пифией. Волшебница сказала, что сын Мнесарха «принесет столько пользы и добра людям, сколько не приносил и не принесет в будущем никто другой». Счастливый отец решил назвать новорожденного Пифагором, и даже жене дать имя Пифаида. Мальчик и впрямь оказался очень одаренным – в 18 лет он отправился в Египет, имея при себе рекомендательное письмо от самого Поликрата. Там Пифагор постигал знания, недоступные простым чужеземцам, и потратил на это 22 года. Еще 12 лет обучения прошли в Вавилоне, куда ученый попал после завоевания Египта царем Камбизом. Именно во время изучения египетских и вавилонских трактатов, Пифагор увлекся Нумерологией. Возвратившись на родной Самос 56-летним стариком, он задумался, почему его учителя, изучая влияние чисел на судьбы людей, оставляли без внимания влияние имен. Ведь любое имя может быть записано в виде определенной последовательности цифр. Да и знакомая всем нам ионийская нумерация была хорошим подспорьем для проверки ученым его гипотезы. Думал Пифагор и о несовершенстве существующей на тот момент классификации чисел. А точнее, о практически полном ее отсутствии. Идеи Пифагора людям того времени казались смелыми и необычными, но все же он сумел найти единомышленников. Ученики и последователи Пифагора позже объединились в некое подобие ордена и стали называться пифагорейцами. Именно пифагорейцами была создана принципиально новая классификация чисел, которая используется многими нумерологами и в наши дни - *девушка указала палочкой на один из плакатов, и изображение стало чуточку ярче, давая возможность даже студентам с галерки без труда прочитать написанное*

Четные

Нечетные

Четно-четные

Составные

Четно-нечетные

Несоставные

Нечетно-четные (Нечетно-нечетные)

Несоставные-составные

Совершенные

Сверхсовершенные

Несовершенные


- Нечетные числа – это числа, состоящие из двух частей, одна из которых четная, а вторая – нечетная. Например: 4 (четная часть) + 3 (нечетная часть) = 7. Нечетное число также можно записать в виде m=2k+1, где k € Z. То есть, k принадлежит множеству целых чисел, и дробные мы в этом случае не рассматриваем.
Четные числа – это числа, состоящие из двух частей, обе из которых либо четные, либо нечетные. Например: 4 (четная часть) + 4 (четная часть) = 8 = 5 (нечетная часть) + 3 (нечетная часть). Четное число также можно записать в виде m=2k, где k € Z. И здесь k тоже является частью множества целых чисел.
Магглы дали бы несколько иное, отличное от пифагорового, определение четности чисел. С их точки зрения четность – это характеристика целого числа. А четные числа – это такие целые числа, которые способны делиться на 2 без остатка. Нечетные числа, соответственно, нацело на 2 не делятся.
*Эйн указала палочкой на нижнюю часть плаката*
(6 + 6) = 12 = (7 + 5) – четное по Пифагору
12:2 = 6 – четное
12 = 2*6, где m=12, k=6
(10 + 5) = 15 – нечетное по Пифагору
15:2 = 7,5 - нечетное
15 = (2*7) + 1, где m=15, k=7
- В нумерологии гораздо чаще используется именно то определение четных и нечетных чисел, которое дал Пифагор.
Составные числа – это числа, которые делятся без остатка на самих себя, единицу и некоторые другие делители. Например: 9 (1; 3; 9), 15 (1; 3; 5; 15) 27 (1; 3; 9; 27), 33 (1; 3; 11; 33) и так далее.
Несоставные числа - это числа, которые делятся без остатка на самих себя и единицу. Например: 3 (1 и 3), 5 (1 и 5), 7 (1 и 7), 11 (1 и 11), 13 (1 и 13) и так далее. Такие числа некоторые нумерологи еще называют линейными. С точки зрения пифагорейцев, их можно изобразить в виде линии, состоящей из последовательно стоящих друг за другом точек.
Несоставные-составные числа – это числа, которые не имеют общего делителя, но каждое из них само по себе делимо. Например: 9 (1; 3; 9) и 25 (1; 5; 25). Как видим, такого общего числа, на которое и 9, и 25 делились бы без остатка, действительно нет. Эти числа всегда рассматриваются в паре.
С четными числами все немного сложнее.
Четно-четные числа - это числа, которые получаются путем удвоения, начиная с единицы. Например: 1, 2, 4, 8 и так далее. Пифагор считал эти числа совершенными, ведь каждое из них можно было поделить на 2 один или несколько раз, и так вплоть до получения 1. У четно-четных чисел есть ряд уникальных свойств. Так, сумма любого числа терминов 1, кроме последнего, всегда равна последнему за вычетом единицы. Страшно? - *спросила студентов Эйн* - Вовсе нет. Рассмотрим пример: (1+2+4+8)=(16-1). Ранее мы с вами уже говорили о том, что же такое четно-четные числа. И если бы нам захотелось записать последовательность этих чисел, мы бы получили вот такие результаты: 1, 2, 4, 8, 16, 32... Значит, следом за 8 должно идти число 16. Но, в соответствии со свойствами четно-четных чисел, при сложении первых четырех чисел мы получим не 16, а 15. Число, на один меньше того, которое могли бы ожидать, глядя на последовательность четно-четных чисел. Числовой ряд, состоящий из таких чисел, тоже имеет одно интересное свойство: первый член, умноженный на последний, дает последний до тех пор, пока в ряду с нечетным числом терминов не останется одно число. И если это число умножить на само себя, получится последнее число в ряду.
Четно-нечетные числа - это числа, которые можно разделить на 2 без остатка всего один раз. Например: 2, 6, 10, 14 и так далее. Если мы попробуем разделить на 2, к примеру, 10, то получим 5. Но если мы попробуем разделить на два 5, то целое число уже не получим. Точно так же все остальные четно-нечетные числа в ряду можно нацело разделить на 2 только один раз. Четно-нечетные числа получаются путем умножения нечетных чисел на 2. Например: 2 (1*2), 6 (3*2), 10 (5*2), 14 (7*2). У четно-нечетных чисел тоже есть свои уникальные свойства. Так, если такое число разделить на нечетный делитель, частное в любом случае будет четным. А если делитель такого числа четный, нечетным будет частное. Например:
14:7 (нечетный делитель)=2 (четное частное)
14:2 (четный делитель) = 7 (нечетное частное)
Числовой ряд таких числе тоже обладает своими собственными свойствами. Так, любое число в ряду является половиной суммы терминов по обе его стороны в ряду. Давайте разбираться в этой премудрости. Возьмем, к примеру, числа 10, 14 и 18. В нашем числовом ряду четно-нечетных чисел 10 и 18 будут стоять по обе стороны от числа 14: 2, 6, 10 , 14, 18 , 22. При этом 10+18=28. А 28:2=14. То есть, 14 действительно является половиной суммы своих соседей по ряду.
С третьим пунктом пифагоровой классификации дела обстоят несколько хуже. Ученые до сих пор спорят о том, как же именно называть эту группу чисел: нечетно-четными или нечетно-нечетными. В разной литературе вы можете встретить и то, и другое название. Поэтому лучше запомните оба, но знайте, что по сути это одно и то же. Нечетно-четные числа занимают промежуточную позицию между четно-четными и четно-нечетными числами. При их последовательном делении на 2 нельзя получить единицу, да, но зато их можно нацело делить на 2 больше одного раза. Нечетно-четные числа получаются путем умножения четно-четных чисел больше 2 на нечетные числа. Некоторые нечетно-четные числа образуются путем умножения ряда нечетных чисел на 4 и далее на весь ряд четно-четных чисел.
Чтобы понять, к какому виду относится то или иное четное число, его нужно разложить на составляющие. При этом количество частей, на которые будет разложено число, должно соответствовать количеству его делителей. Например, число 6. Оно делится на 2, 3, 1 и на само себя. Следовательно, 2+3+1=6; 6/6=1. Из этого мы можем сделать ввод о том, что:
Совершенные числа – это числа, сумма частей которых равна целому.
Но бывают и другие числа. Такие, например, как 18. Оно делится на 2, 9, 6, 3, 1 и на само себя. Следовательно, 2+9+3+6+1= 21; 18/18 =1. Сумма частей явно больше целого. В таком случае, число считается сверхсовершенным.
Сверхсовершенные числа - это числа, сумма частей которых превышает целое.
Рассмотрим еще один пример. Число 8. Оно делится на 2, 4, 1 и на само себя. Следовательно, 2+4+1=7; 8/8=1. Сумма частей меньше целого. А это значит, что мы подошли к понятию несовершенных чисел.
Несовершенные числа - это числа, сумма частей которых меньше целого.
- Профессор, а нечетные числа могут быть совершенными? - *уточнила серьезная девушка с гербом Хаффлпаффа на мантии*
*В классе раздались сдавленные смешки*
- Зря смеетесь - *одернула весельчаков волшебница* - Мисс Тайлер задала очень правильный вопрос. Действительно, нечетное число может быть совершенным. Правда, пока только в теории - *вздохнула девушка* - Ученым-нумерологам точно известно, что такое число должно иметь 9 простых делителей и 75 простых делителей с учетом кратности. Само число пока обнаружено не было, но никем не доказано, что оно не существует. Сейчас некоторые нумерологи занимаются поисками такого числа. Быть может, кому-нибудь из вас в будущем повезет стать его первооткрывателем.
- В зависимости от того, к какой группе относится то или иное число, оно обладает определенными свойствами - *продолжила лекцию чародейка* - И именно эти свойства влияют на судьбу человека. Четные числа пифагорейцы связывали с пассивным женским началом. Эти числа - отображение замкнутых процессов в природе и самом человеке, цикличных изменений в рамках единого целого. Четные числа могут влиять на что-то количественно, но не качественно. Нечетные числа, наоборот, обычно связывают с активным мужским началом. Они - отображение открытых систем и переходных процессов. Нечетные числа изменяют что-либо качественно, а не количественно.
- Совершенные числа самые лучшие - *крикнул вихрастый второкурсник с красной нашивкой на мантии*
*Профессор Дэвис нахмурилась: этого студента она не помнила, он был на лекции впервые*
- Верно, мистер… Уолтон - *сверяясь с журналом, ответила она* - Но впредь, не сочтите за труд, поднимайте руку. Действительно, Пифагор видел в совершенных числах символ добродетели, золотой середины между недостатком и излишеством. Чем больше совершенных чисел окружает человека, тем больше добродетелей в нем самом. Несовершенные же числа Пифагор называл символами порока. Соответственно, чем хуже человек, тем больше несовершенных чисел его окружает. Но об определенной степени влияния чисел на судьбу мы уже говорили на нашем первом занятии. Судьба поливариантна и выбор зачастую зависит только от нас самих. Числа являются нашими путеводными звездами, но сам путь выбираем мы. Поэтому говорить о том, что кто-то стал успешным только благодаря счастливой дате рождения, а кто-то родился под несчастливой звездой и потому вырос негодяем, нельзя. Но вернемся к нашей классификации. Впоследствии пифагорейцы существенно дополнили и расширили ее. Особенно отличились в этом деле Гиппас из Метапонта, Дамо, гипотетическая дочь Пифагора и Феано, Модерат из Кадиса, Тимей Локрийский, Феано, жена Пифагора, Филолай и Экфант из Сиракуз. Согласно работам этих пифагорейцев, числа бывают и вот такими - *профессор указала палочкой на очередной плакат, и тот сразу стал гораздо ярче и заметнее*

Продолжатели дела великого ученого долго спорили о том, можно ли считать ноль числом, а также о том, каким именно образом его классифицировать и в какую группу определить. Немало споров вызвала и единица. В результате ей была отведена важная роль первичного четно-нечетного числа. Именно она легла в основу дополненной классификации, созданной талантливыми нумерологами древности. В соответствии с этой классификацией:
Квадратные числа – это числа, получающиеся при сложении чисел нечетных. Например: 1+3=4; 1+3+5+7=16; 1+3+5=9; 3+13=16. Эти числа пифагорейцы иногда изображали в виде квадратов.
Прямоугольные числа - это числа, получающиеся при сложении чисел четных. Например: 2+4=6; 2+4+6=12.
Треугольные числа - это числа, получающиеся при сложении четных и нечетных чисел по порядку. Например: 1+2=3; 1+2+3=6; 1+2+3+4=10. Эти числа, с точки зрения пифагорейцев, могут быть изображены треугольниками.
Пятиугольные числа - эти числа, по мнению пифагорейцев, могут быть изображены пятиугольниками. К пятиугольным числам относят 5, 12 и 22.
Практически любое число может относиться ко всем трем категориям. В зависимости от тех или иных расчетов, оно может быть и квадратным, и треугольным, а также прямоугольным и пятиугольным.
- Теперь поговорим о том, какими же именно свойствами наделяли числа первые исследователи - *волшебница указала палочкой на большой плакат, испещеренный цифрами и их трактовками*

Число

Название

Изображение

Свойства

Первичное четно-нечетное число, основа всего сущего. Число начинаний, положительной динамики и силы. Диоген Лаэртский отмечал, что из монады проистекает весь числовой ряд. Из монады исходит диада, из диады – все остальные числа, а из них - точки, линии, «двумерные» и «трехмерные сущности» и тела. Символизирует прямолинейность, независимость, лидерство и смелость, в несовершенном виде может символизировать агрессию и эгоизм.

Вторичное число, выражающее принцип двойственности всего сущего. Самое «мягкое» число, символ сотрудничества и дипломатичности. Обычно диада встречается в дате рождения или имени будущего наставника и советника. Придает дополнительную жизненную силу, многие долгожители и здоровяки даже не подозревают о том, что этим они обязаны не только здоровому образу жизни и регулярным физическим нагрузкам.

Самое прекрасное, с точки зрения пифагорейцев, число. Единственное из всех натуральных чисел представляет собой сумму своих предшественников. Единственное число, у которого сумма предшественников равна их же произведению. Триада – одно из чисел магии. Традиционно числами магической силы считаются 3, 7 и 11. Очень мощное созидательное и мотивационное число. Символизирует оптимизм, самовыражение и удачу.

Еще одно любимое число пифагорейцев. Первое число, полученное путем сложения и умножения равных чисел. Символ справедливости, упорядоченности, точности и надежности. Человеку прививает любовь к порядку и правилам, анализу и систематизации, усиливает упорство в достижении цели, четность и искренность.

Этот символ носили при себе все пифагорейцы. Благодаря ему они узнавали единомышленников. Число жизни, власти и неуязвимости. В своих трудах Никомах писал: «Правосудие – это пентада». Пифагорейцы считали пентаду священным числом, символом объединения мужского и женского начал, любви и брака.

Число равновесия мироздания. Символ здоровья и неиссякаемой жизненной энергии.

Пифагорейцы называли эннеаду «числом-горизонтом», разграничивающим числа первого и всех последующих десятков. Символ завершения, таланта, артистизма, идеализма и альтруизма.

Число схождения, пифагорейцы видели в нем символ соединения земли и неба. Декаду было принято изображать в виде священного символа тетраксиса.


*Волшебница перевела палочку с таблицы на одно из изображений*

Очень часто вместо того изображения декады, которое дано в таблице, пифагорейцы писали вот такой священный знак тетраксис, символ гармонии и Вселенной. Конечно, их трактовку нельзя рассматривать как единственно правильную и верную. У нумерологов других стран этим числам могут быть даны совершенно иные характеристики. И все же пифагорейские характеристики пользуются большим уважением среди нумерологов. В ряде случае они очень полно и точно отражают истинную сущность большинства чисел. И…
*Но школьный колокол вновь самым наглым и беззастенчивым образом прервал профессора*
//Уже?//
*Девушка вытащила из кармана мантии серебряные часы на тонкой цепочке и убедилась в том, что время вышло и лекцию действительно пора завершать*
- На сегодня все. О квадрате Пифагора и других не менее интересных вещах поговорим на следующей лекции. Домашнее задание на доске - *Эйн раздвинула несколько плакатов и освободила немного места. Коснувшись доски волшебной палочкой, она дала студентам возможность переписать появившееся там задание*

Задания

  1. Один из студентов на лекции поддался лени и не стал подробно записывать выдаваемую мисс Дэвис информацию. А теперь и сам запутался в собственных записях. Как вы думаете, о каких пифагорейских числах здесь идет речь? Аргументируйте.
    - Первичное всевидящее око
    - Два кольца здоровья
    - Тетрадка порядка
    - Вызови демона правосудия
    - Звезда равновесия
    - Многауглофф в голове мудреца
    - Первая кубическая штуковина
    - Лотос идеалиста
    - Три небесно-земных пламбоба в круге
  2. Приведите минимум по одному примеру замкнутых количественных процессов в человеческом организме и открытых качественных в окружающей человека среде. Например, ежегодное взросление/старение человека на 1 год – это цикличный замкнутый количественный процесс.

Дополнительные задания

    1. Сочинение. Вам предстоит сложный экзамен, к которому вы не очень хорошо готовы. Услышав от однокурсников о том, что изображение одного из пифагорейских чисел на пергаменте приносит удачу при тестировании. Вы решаете попробовать. Какой именно знак вы нанесете на свой экзаменационный пергамент и почему?
    1. Доклад «Не так страшен знак, как его малюют». Пентаграмма не всегда была отрицательным символом – ее изображал на своих печатях Александр Македонский, а легендарный сэр Гавейн носил на своем щите. Расскажите о том, какой сложный историко-культурный путь прошел этот амбивалентный символ. (1000 символов)
    1. Ролевой отыгрыш «Семейная мелодрама». Вам крупно не повезло - ваша младшая сестра родилась сквибом. Пока родители не сообразили, что к чему, вы решили взять ситуацию в свои руки и исправить ее. Вам известно, что 3 с точки зрения пифагорейцев – это число магии. А значит, если окружить несчастную тройками, теоретически, в ней должна проснуться полноценная магия. Отыграйте свои попытки помочь и постарайтесь не попасться на глаза родителям, чтобы все тайное не стало явным.
    1. Задание на фантазию. Вам крупно повезло – вы являетесь личным нумерологом Волдеморта/Гарри Поттера (выбор персонажа на ваше усмотрение). Вы посоветовали своему патрону всегда иметь при себе знак тетраксиса – он должен обеспечить успех в любых делах. Однако ожидаемого успеха почему-то нет как нет, ваш патрон недоволен и намерен уволить вас на бумаге или посредством Авады. Постарайтесь сохранить не только свое место, но и жизнь. Задание можно оформить в виде ролевого отыгрыша.
  1. (Эта лекция только для 1, 2, 3, 4, 5, 6, 7 курсов)

Числа разделяются на классы. Целые положительные числа - N = {1, 2, 3, … } - составляют множество натуральных чисел. Зачастую и 0 считают натуральным числом.

Множество целых чисел Z включает в себя все натуральные числа, число 0 и все натуральные числа, взятые со знаком минус: Z = {0, 1, -1, 2, -2, …}.

Каждое рациональное число x можно задать парой целых чисел (m, n), где m является числителем, n - знаменателем числа: x = m/n. Эквивалентным представлением рационального числа является его задание в виде числа, записанного в позиционной десятичной системе счисления, где дробная часть числа может быть конечной или бесконечной периодической дробью. Например, число x = 1/3 = 0,(3) представляется бесконечной периодической дробью.

Числа, задаваемые бесконечными непериодическими дробями, называются иррациональными числами . Таковыми являются, например, все числа вида vp, где p - простое число. Иррациональными являются известные всем числа и e.

Объединение множеств целых, рациональных и иррациональных чисел составляет множество вещественных чисел. Геометрическим образом множества вещественных чисел является прямая линия - вещественная ось, где каждой точке оси соответствует некоторое вещественное число, так что вещественные числа плотно и непрерывно заполняют всю вещественную ось.

Плоскость представляет геометрический образ множества комплексных чисел, где вводятся уже две оси - вещественная и мнимая. Каждое комплексное число, задаваемое парой вещественных чисел, представимо в виде: x = a+b*i, где a и b - вещественные числа, которые можно рассматривать как декартовы координаты числа на плоскости.

Делители и множители

Рассмотрим сейчас классификацию, которая делит множество натуральных чисел на два подмножества - простых и составных чисел. В основе этой классификации лежит понятие делимости натуральных чисел. Если n делится нацело на d, то говорят, что d "делит" n, и записывают это в виде: . Заметьте, это определение, возможно, не соответствует интуитивному пониманию: d "делит" n, если n делится на d, а не наоборот. Число d называется делителем числа n. У каждого числа n есть два тривиальных делителя - 1 и n. Делители, отличные от тривиальных, называются множителями числа n. Число n называется простым, если у него нет делителей, отличных от тривиальных. Простые числа делятся только на 1 и сами на себя. Числа, у которых есть множители, называются составными. Число 1 является особым числом, поскольку не относится ни к простым, ни к составным числам. Отрицательные числа также не относятся ни к простым, ни к составным, но всегда можно рассматривать модуль числа и относить его к простым или составным числам.

Любое составное число N можно представить в виде произведения его множителей: . Это представление не единственно, например 96 = 8*12 = 2*3*16. Однако для каждого составного числа N существует единственное представление в виде произведения степеней простых чисел: , где - простые числа и . Это представление называется разложением числа N на простые множители. Например .

Если и , то d является общим делителем чисел m и n. Среди всех общих делителей можно выделить наибольший общий делитель, обозначаемый как НОД(m,n). Если НОД(m,n) = 1, то числа m и n называются взаимно простыми. Простые числа взаимно просты, так что НОД(q,p) =1, если q и p - простые числа.

Если и , то A является общим кратным чисел m и n. Среди всех общих кратных можно выделить наименьшее общее кратное, обозначаемое как НОК(m,n). Если НОК(m,n) = m*n, то числа m и n являются взаимно простыми. НОК(q, p) =q*p, если q и p - простые числа.

Если через и обозначить множества всех простых множителей чисел m и n, то

Если получено разложение чисел m и n на простые множители, то, используя приведенные соотношения, нетрудно вычислить НОД(m,n) и НОК(m,n). Существуют и более эффективные алгоритмы, не требующие разложения числа на множители.

Алгоритм Эвклида

Эффективный алгоритм вычисления НОД(m,n) предложен еще Эвклидом. Он основывается на следующих свойствах НОД(m,n), доказательство которых предоставляется читателю:

Если , то по третьему свойству его можно уменьшить на величину n. Если же , то по второму свойству аргументы можно поменять местами и вновь придти к ранее рассмотренному случаю. Когда же в результате этих преобразований значения аргументов сравняются, то решение будет найдено. Поэтому можно предложить следующую схему:

while(m != n) { if(m < n) swap(m,n); m = m - n; } return(m);

Здесь процедура swap выполняет обмен значениями аргументов.

Если немного подумать, то становится ясно, что вовсе не обязательно обмениваться значениями - достаточно на каждом шаге цикла изменять аргумент с максимальным значением. В результате приходим к схеме:

while(m != n) { if(m > n) m = m - n; else n = n - m; } return(m);

Если еще немного подумать, то можно улучшить и эту схему, перейдя к циклу с тождественно истинным условием:

while(true) { if(m > n) m = m - n; else if (n > m) n = n - m; else return(m); }

Последняя схема хороша тем, что в ней отчетливо видна необходимость доказательства завершаемости этого цикла. Доказать завершаемость цикла нетрудно, используя понятие варианта цикла . Для данного цикла вариантом может служить целочисленная функция - max(m,n) , которая уменьшается на каждом шаге, оставаясь всегда положительной.

Достоинством данной версии алгоритма Эвклида является и то, что на каждом шаге используется элементарная и быстрая операция над целыми числами - вычитание. Если допустить операцию вычисления остатка при делении нацело, то число шагов цикла можно существенно уменьшить. Справедливо следующее свойство:

Это приводит к следующей схеме:

int temp; if(n>m) temp = m; m = n; n = temp; //swap(m,n) while(m != n) { temp = m; m = n; n = temp%n; }

Если немного подумать, то становится ясно, что вовсе не обязательно выполнять проверку перед началом цикла. Это приводит к более простой схеме вычисления НОД, применяемой обычно на практике:

int temp; while(m != n) { temp = m; m = n; n = temp%n; }

Для вычисления НОК(m, n) можно воспользоваться следующим соотношением:

А можно ли вычислить НОК(m, n), не используя операций умножения и деления? Оказывается, можно одновременно с вычислением НОД(m,n) вычислять и НОК(m,n). Вот соответствующая схема:

int x = v = m, y = u = n,; while(x != y) { if(x > y){ x = x - y; v = v + u;} else {y = y - x; u = u + v;} } НОД = (x + y)/2; НОК = (u+v)/2;

Доказательство того, что эта схема корректно вычисляет НОД, следует из ранее приведенных свойств НОД. Менее очевидна корректность вычисления НОК. Для доказательства заметьте, что инвариантом цикла является следующее выражение:

Это соотношение выполняется после инициализации переменных до начала выполнения цикла. По завершении цикла, когда x и y становятся равными НОД, из истинности инварианта следует корректность схемы. Нетрудно проверить, что операторы тела цикла оставляют утверждение истинным. Детали доказательства оставляются читателям.

Понятие НОД и НОК можно расширить, определив их для всех целых чисел. Справедливы следующие соотношения:

Расширенный алгоритм Эвклида

Иногда полезно представлять НОД(m,n) в виде линейной комбинации m и n:

В частности, вычисление коэффициентов a и b необходимо в алгоритме RSA - шифрования с открытым ключом. Приведу схему алгоритма, позволяющую вычислить тройку - d, a, b - наибольший общий делитель и коэффициенты разложения. Алгоритм удобно реализовать в виде рекурсивной процедуры

ExtendedEuclid(int m, int n, ref int d, ref int a, ref int b),

которая по заданным входным аргументам m и n вычисляет значения аргументов d, a, b. Нерекурсивная ветвь этой процедуры соответствует случаю n = 0, возвращая в качестве результата значения: d = m, a = 1, b = 0. Рекурсивная ветвь вызывает

ExtendedEuclid(n, m % n, ref d, ref a, ref b)

и затем изменяет полученные в результате вызова значения a и b следующим образом:

Доказательство корректности этого алгоритма построить нетрудно. Для нерекурсивной ветви корректность очевидна, а для рекурсивной ветви нетрудно показать, что из истинности результата, возвращаемого при рекурсивном вызове, следует его истинность для входных аргументов после пересчета значений a и b.

Как работает эта процедура? Вначале происходит рекурсивный спуск, пока n не станет равно нулю.

В этот момент впервые будет вычислено значение d и значения параметров a и b. После этого начнется подъем и будут перевычисляться параметры a и b.

Задачи
  • 49. Даны m и n - натуральные числа. Вычислите НОД(m, n). При вычислениях не используйте операций умножения и деления.
  • 50. Даны m и n - натуральные числа. Вычислите НОК(m, n).
  • 51. Даны m и n - натуральные числа. Вычислите НОК(m, n). При вычислениях не используйте операций умножения и деления.
  • 52. Даны m и n - целые числа. Вычислите НОД(m, n). При вычислениях не используйте операций умножения и деления.
  • 53. Даны m и n - целые числа. Вычислите НОК(m, n). При вычислениях не используйте операций умножения и деления.
  • 54. Даны m и n - целые числа. Вычислите НОД(m, n). При вычислениях используйте операцию взятия остатка от деления нацело.
  • 55. Даны m и n - целые числа. Вычислите НОК(m, n). При вычислениях используйте операцию взятия остатка от деления нацело.
  • 56. Даны m и n - целые числа. Вычислите тройку чисел - (d, a, b), используя расширенный алгоритм Эвклида.
  • 57. Даны m и n - натуральные числа. Представьте НОД(m, n) в виде линейной комбинации m и n.
  • 58. Даны m и n - целые числа. Представьте НОД(m, n) в виде линейной комбинации m и n.
  • 59. Даны m и n - целые числа. Проверьте, являются ли числа m и n взаимно простыми.
Простые числа

Среди четных чисел есть только одно простое число - это 2. Простых нечетных чисел сколь угодно много. Нетрудно доказать, что число , где - подряд идущие простые числа, является простым. Так что, если построено простых чисел, то можно построить еще одно простое число , большее . Отсюда следует, что множество простых чисел неограниченно. Пример: число N = 2*3*5*7 + 1 = 211 является простым числом.

Решето Эратосфена

Как определить, что число N является простым? Если допустима операция N % m, дающая остаток от деления числа N на число m, то простейший алгоритм состоит в проверке того, что остаток не равен нулю при делении числа N на все числа m, меньшие N. Очевидным улучшением этого алгоритма является сокращение диапазона проверки - достаточно рассматривать числа m в диапазоне .

Еще в 3-м веке до н.э. греческий математик Эратосфен предложил алгоритм нахождения простых чисел в диапазоне , не требующий операций деления. Этот алгоритм получил название "Решето Эратосфена". В компьютерном варианте идею этого алгоритма можно описать следующим образом. Построим массив Numbers, элементы которого содержат подряд идущие нечетные числа, начиная с 3. Вначале все числа этого массива считаются невычеркнутыми. Занесем первое невычеркнутое число из этого массива в массив SimpleNumbers - и это будет первое нечетное простое число (3). Затем выполним просеивание, проходя по массиву Numbers с шагом, равным найденному простому числу, вычеркивая все попадающиеся при этом проходе числа. При первом проходе будет вычеркнуто число 3 и все числа, кратные 3. На следующем проходе в таблицу простых чисел будет занесено следующее простое число 5, а из массива Numbers будут вычеркнуты числа, кратные 5. Процесс повторяется, пока не будут вычеркнуты все числа в массиве Numbers. В результате массив SimpleNumbers будет содержать таблицу первых простых чисел, меньших N.

Этот алгоритм хорош для нахождения сравнительно небольших простых чисел. Но если потребуется найти простое число с двадцатью значащими цифрами, то памяти компьютера уже не хватит для хранения соответствующих массивов. Замечу, что в современных алгоритмах шифрования используются простые числа, содержащие несколько сотен цифр.

Плотность простых чисел

Мы показали, что число простых чисел неограниченно. Понятно, что их меньше, чем нечетных чисел, но насколько меньше? Какова плотность простых чисел? Пусть - это функция, возвращающая число простых чисел, меньших n. Точно задать эту функцию не удается, но для нее есть хорошая оценка. Справедлива следующая теорема:

Функция асимптотически сверху приближается к своему пределу, так что оценка дает слегка заниженные значения. Эту оценку можно использовать в алгоритме решета Эратосфена для выбора размерности массива SimpleNumbers, когда задана размерность массива Numbers, и, наоборот, при заданной размерности таблицы простых чисел можно выбрать подходящую размерность для массива Numbers.

Табличный алгоритм определения простоты чисел

Если хранить таблицу простых чисел SimpleNumbers, в которой наибольшее простое число равно M, то достаточно просто определить, является ли число N, меньшее , простым. Если N меньше M, то достаточно проверить, находится ли число N в таблице SimpleNumbers. Если N больше M, то достаточно проверить, делится ли число N на числа из таблицы SimpleNumbers, не превосходящие значения vN. Понятно, что если у числа N нет простых множителей, меньших vN, то число N является простым.

Использование таблицы простых чисел требует соответствующей памяти компьютера, а следовательно, ограничивает возможности этого алгоритма, не позволяя использовать его для нахождения больших простых чисел.

Тривиальный алгоритм

Если N - нечетное число, то проверить, что оно является простым, можно на основе определения простоты числа. При этом не требуется никакой памяти для хранения таблиц чисел, - но, как всегда, выигрывая в памяти, мы проигрываем во времени. Действительно, достаточно проверить, делится ли нацело число N на подряд идущие нечетные числа в диапазоне . Если у числа N есть хоть один множитель, то оно составное, иначе - простое.

Все рассмотренные алгоритмы перестают эффективно работать, когда числа выходят за пределы разрядной сетки компьютера, отведенной для представления чисел, так что если возникает необходимость работы с целыми числами, выходящими за пределы диапазона System.Int64, то задача определения простоты такого числа становится совсем не простой. Существуют некоторые рецепты, позволяющие определить, что число является составным. Вспомним хотя бы известные со школьных времен алгоритмы. Если последняя цифра числа делится на 2, то и число делится на 2. Если две последние цифры числа делятся на 4, то и число делится на 4. Если сумма цифр делится на 3 (на 9), то и число делится на 3 (на 9). Если последняя цифра равна 0 или 5, то число делится на 5. Математики затратили много усилий, доказывая, что то или иное число является (или не является) простым числом. Сейчас есть особые приемы, позволяющие доказать, что числа некоторого вида являются простыми. Наиболее подходящими кандидатами на простоту являются числа вида , где p - это простое число. Например, доказано, что число , имеющее более 6000 цифр, является простым, но нельзя сказать, какие простые числа являются ближайшими соседями этого числа.

Задачи

Проекты

  • 67. Построить класс "Температура", позволяющий задавать температуру в разных единицах измерения. Построить Windows-проект, поддерживающий интерфейс для работы с классом.
  • 68. Построить класс "Расстояния", позволяющий использовать разные системы мер. Построить Windows-проект, поддерживающий интерфейс для работы с классом.
  • 69. Построить класс "Простые числа". Построить Windows-проект, поддерживающий интерфейс для работы с классом.
  • 70. Построить класс "Системы счисления". Построить Windows-калькулятор, поддерживающий вычисления в заданной системе счисления.
  • 71. Построить класс "Рациональные числа". Построить Windows-калькулятор, поддерживающий вычисления с этими числами.
  • 72. Построить класс "Комплексные числа". Построить Windows-калькулятор, поддерживающий вычисления с этими числами.
error: