Нод и нок чисел - наибольший общий делитель и наименьшее общее кратное нескольких чисел. «Натуральные числа. Признаки делимости. НОД и НОК Примеры нахождения наибольшего общего делителя


Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК - наименьшее общее кратное, определение, примеры, связь между НОК и НОД . Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

Навигация по странице.

Вычисление наименьшего общего кратного (НОК) через НОД

Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД . Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

Пример.

Найдите наименьшее общее кратное двух чисел 126 и 70 .

Решение.

В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

Ответ:

НОК(126, 70)=630 .

Пример.

Чему равно НОК(68, 34) ?

Решение.

Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

Ответ:

НОК(68, 34)=68 .

Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b : если число a делится на b , то наименьшее общее кратное этих чисел равно a .

Нахождение НОК с помощью разложения чисел на простые множители

Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители . Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5 ), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

Пример.

Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

Решение.

Разложим числа 441 и 700 на простые множители:

Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7 ): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

Ответ:

НОК(441, 700)= 44 100 .

Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

Пример.

Найдите наименьшее общее кратное чисел 84 и 648 .

Решение.

Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

Ответ:

НОК(84, 648)=4 536 .

Нахождение НОК трех и большего количества чисел

Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

Теорема.

Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

Пример.

Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

Решение.

В этом примере a 1 =140 , a 2 =9 , a 3 =54 , a 4 =250 .

Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

Ответ:

НОК(140, 9, 54, 250)=94 500 .

Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

Пример.

Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

Решение.

Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число , оно совпадает со своим разложением на простые множители) и 143=11·13 .

Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7 ) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .

Рассмотрим два основных метода нахождения НОД двумя основными способами: с использованием алгоритма Евклида и путем разложения на простые множители. Применим оба метода для двух, трех и большего количества чисел.

Алгоритм Евклида для нахождения НОД

Алгоритм Евклида позволяет с легкостью вычислить наибольший общий делитель для двух положительных чисел. Формулировки и доказательство алгоритма Евклида мы привели в разделе «Наибольший общий делитель: определитель, примеры».

Суть алгоритма заключается в том, чтобы последовательно проводить деление с остатком, в ходе которого получается ряд равенств вида:

a = b · q 1 + r 1 , 0 < r 1 < b b = r 1 · q 2 + r 2 , 0 < r 2 < r 1 r 1 = r 2 · q 3 + r 3 , 0 < r 3 < r 2 r 2 = r 3 · q 4 + r 4 , 0 < r 4 < r 3 ⋮ r k - 2 = r k - 1 · q k + r k , 0 < r k < r k - 1 r k - 1 = r k · q k + 1

Мы можем закончить деление тогда, когда r k + 1 = 0 , при этом r k = НОД (a , b) .

Пример 1

64 и 48 .

Решение

Введем обозначения: a = 64 , b = 48 .

На основе алгоритма Евклида проведем деление 64 на 48 .

Получим 1 и остаток 16 . Получается, что q 1 = 1 , r 1 = 16 .

Вторым шагом разделим 48 на 16 , получим 3 . То есть q 2 = 3 , а r 2 = 0 . Таким образом число 16 – это наибольший общий делитель для чисел из условия.

Ответ: НОД (64 , 48) = 16 .

Пример 2

Чему равен НОД чисел 111 и 432 ?

Решение

Делим 432 на 111 . Согласно алгоритму Евклида получаем цепочку равенств 432 = 111 · 3 + 99 , 111 = 99 · 1 + 12 , 99 = 12 · 8 + 3 , 12 = 3 · 4 .

Таким образом, наибольший общий делитель чисел 111 и 432 – это 3 .

Ответ: НОД (111 , 432) = 3 .

Пример 3

Найдите наибольший общий делитель чисел 661 и 113 .

Решение

Проведем последовательно деление чисел и получим НОД (661 , 113) = 1 . Это значит, что 661 и 113 – это взаимно простые числа. Мы могли выяснить это до начала вычислений, если бы обратились к таблице простых чисел.

Ответ: НОД (661 , 113) = 1 .

Нахождение НОД с помощью разложения чисел на простые множители

Для того, чтобы найти наибольший общий делитель двух чисел методом разложения на множители, необходимо перемножить все простые множители, которые получаются при разложении этих двух чисел и являются для них общими.

Пример 4

Если мы разложим числа 220 и 600 на простые множители, то получим два произведения: 220 = 2 · 2 · 5 · 11 и 600 = 2 · 2 · 2 · 3 · 5 · 5 . Общими в этих двух произведениях будут множители 2 , 2 и 5 . Это значит, что НОД (220 , 600) = 2 · 2 · 5 = 20 .

Пример 5

Найдите наибольший общий делитель чисел 72 и 96 .

Решение

Найдем все простые множители чисел 72 и 96 :

72 36 18 9 3 1 2 2 2 3 3

96 48 24 12 6 3 1 2 2 2 2 2 3

Общими для двух чисел простые множители: 2 , 2 , 2 и 3 . Это значит, что НОД (72 , 96) = 2 · 2 · 2 · 3 = 24 .

Ответ: НОД (72 , 96) = 24 .

Правило нахождения наибольшего общего делителя двух чисел основано на свойствах наибольшего общего делителя, согласно которому НОД (m · a 1 , m · b 1) = m · НОД (a 1 , b 1) , где m – любое целое положительное число.

Нахождение НОД трех и большего количества чисел

Независимо от количества чисел, для которых нам нужно найти НОД, мы будем действовать по одному и тому же алгоритму, который заключается в последовательном нахождении НОД двух чисел. Основан этот алгоритм на применении следующей теоремы: НОД нескольких чисел a 1 , a 2 , … , a k равен числу d k , которое находится при последовательном вычислении НОД (a 1 , a 2) = d 2 , НОД (d 2 , a 3) = d 3 , НОД (d 3 , a 4) = d 4 , … , НОД (d k - 1 , a k) = d k .

Пример 6

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение

Введем обозначения: a 1 = 78 , a 2 = 294 , a 3 = 570 , a 4 = 36 .

Начнем с того, что найдем НОД чисел 78 и 294: d 2 = НОД (78 , 294) = 6 .

Теперь приступим к нахождению d 3 = НОД (d 2 , a 3) = НОД (6 , 570) . Согласно алгоритму Евклида 570 = 6 · 95 . Это значит, что d 3 = НОД (6 , 570) = 6 .

Найдем d 4 = НОД (d 3 , a 4) = НОД (6 , 36) . 36 делится на 6 без остатка. Это позволяет нам получить d 4 = НОД (6 , 36) = 6 .

d 4 = 6 , то есть, НОД (78 , 294 , 570 , 36) = 6 .

Ответ:

А теперь давайте рассмотрим еще один способ вычисления НОД для тех и большего количества чисел. Мы можем найти НОД, перемножив все общие простые множители чисел.

Пример 7

Вычислите НОД чисел 78 , 294 , 570 и 36 .

Решение

Произведем разложение данных чисел на простые множители: 78 = 2 · 3 · 13 , 294 = 2 · 3 · 7 · 7 , 570 = 2 · 3 · 5 · 19 , 36 = 2 · 2 · 3 · 3 .

Для всех четырех чисел общими простыми множителями будут числа 2 и 3 .

Получается, что НОД (78 , 294 , 570 , 36) = 2 · 3 = 6 .

Ответ: НОД (78 , 294 , 570 , 36) = 6 .

Нахождение НОД отрицательных чисел

Если нам приходится иметь дело с отрицательными числами, то для нахождения наибольшего общего делителя мы можем воспользоваться модулями этих чисел. Мы можем так поступить, зная свойство чисел с противоположными знаками: числа n и - n имеют одинаковые делители.

Пример 8

Найдите НОД отрицательных целых чисел − 231 и − 140 .

Решение

Для выполнения вычислений возьмем модули чисел, данных в условии. Это будут числа 231 и 140 . Запишем это кратко: НОД (− 231 , − 140) = НОД (231 , 140) . Теперь применим алгоритм Евклида для нахождения простых множителей двух чисел: 231 = 140 · 1 + 91 ; 140 = 91 · 1 + 49 ; 91 = 49 · 1 + 42 ; 49 = 42 · 1 + 7 и 42 = 7 · 6 . Получаем, что НОД (231 , 140) = 7 .

А так как НОД (− 231 , − 140) = НОД (231 , 140) , то НОД чисел − 231 и − 140 равен 7 .

Ответ: НОД (− 231 , − 140) = 7 .

Пример 9

Определите НОД трех чисел − 585 , 81 и − 189 .

Решение

Заменим отрицательные числа в приведенном перечне на их абсолютные величины, получим НОД (− 585 , 81 , − 189) = НОД (585 , 81 , 189) . Затем разложим все данные числа на простые множители: 585 = 3 · 3 · 5 · 13 , 81 = 3 · 3 · 3 · 3 и 189 = 3 · 3 · 3 · 7 . Общими для трех чисел являются простые множители 3 и 3 . Получается, что НОД (585 , 81 , 189) = НОД (− 585 , 81 , − 189) = 9 .

Ответ: НОД (− 585 , 81 , − 189) = 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Наибольший общий делитель – это еще один показатель, позволяющий упростить работу с дробями. Очень часто в результате вычислений получаются дроби с очень большими значениями числителя и знаменателя. Сокращать поэтапно такие числа можно, но это крайне долго, поэтому проще сразу найти НОД и сократить на него. Разберемся в теме подробнее.

Что такое НОД?

Наибольший общий делитель (НОД) ряда чисел – это наибольшее число, на которое можно без остатка разделить каждое из чисел ряда.

Как найти НОД?

Для того, чтобы найти НОД необходимо каждое из чисел разложить на простые множители и выделить общую часть.

Специальной формулы для этого не придумали, зато есть алгоритм вычисления.

Приведем пример нахождения наибольшего общего делителя двух натуральных чисел: 540 и 252. Разложим 640 на простые множители. Последовательность действий такова:

  • Делим число на наименьший из возможных простых чисел. То есть, если число можно разделить на 2, 3 или 5, то сначала нужно делить на 5. Просто, чтобы не запутаться.
  • Получившийся результат делим на наименьшее из возможных простых чисел.
  • Повторяем деление каждого полученного результата, пока не получим простое число.

Теперь проведем ту же процедуру на практике.

  • 540: 2=270
  • 270:2=135
  • 135: 3 =45
  • 45: 3=15
  • 15: 5 = 3

Запишем результат в виде равенства 540=2*2*3*3*3*5. Для того, чтобы записать результат, нужно последнее получившееся число умножить на все делители.

Аналогично поступим с числом 252:

  • 252: 2=126
  • 126: 2=63
  • 63: 3=21
  • 21: 3 = 7

Запишем результат: 252=2*2*3*3*7.

В каждом разложении есть одинаковые числа. Найдем их, это два числа 2 и два числа 3. Отличаются только 7 и 3*5.

Для того, чтобы найти НОД нужно перемножить общие множетели. То есть в произведении будет две двойки и две тройки.

НОД=2*2*3*3=36

Как можно это использовать?

Задача: сократить дробь $$252\over540$$.

НОД для двух этих чисел мы уже находили, теперь просто воспользуемся уже посчитанным значением.

Сократим числитель и знаменатель дроби на 36 и получим ответ.

$${252\over540} ={7\over15}$$ - чтобы быстро сократить, достаточно посмотреть на разложение чисел.

Если 540=2*2*3*3*3*5, а НОД=36=2*2*3*3, то 540 = 36*3*5. И если мы поделим 540 на 36, то получим 3*5=15.

Без НОД нам пришлось бы в одну длинную строку писать сокращения. К тому же, бывают случаи, когда непонятно, можно ли сократить дробь вообще. Для таких ситуаций в математике и придумали разложение чисел на простые множители и НОД.

Что мы узнали?

Мы узнали, что такое наибольший общий делитель пары чисел, разобрались, как можно использовать показатель на практике, решили задачу на нахождение НОД и применение НОД для сокращения дробей. Поняли, что с использованием НОД можно проще и быстрее сократить громоздкие дроби, найдя НОД для числителя и знаменателя.

Тест по теме

Оценка статьи

Средняя оценка: 4.3 . Всего получено оценок: 204.

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Например :

Число 12 делится на 1, на 2, на 3, на 4, на 6, на 12;

Число 36 делится на 1, на 2, на 3, на 4, на 6, на 12, на 18, на 36.

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12) называются делителями числа . Делитель натурального числа a - это такое натуральное число, которое делит данное число a без остатка. Натуральное число, которое имеет более двух делителей, называется составным .

Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12. Наибольший из делителей этих чисел - 12. Общий делитель двух данных чисел a и b - это число, на которое делятся без остатка оба данных числа a и b .

Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например , числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 - тоже их общие кратные. Среди всех jбщих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК) .

НОК всегда натуральное число, которое должно быть больше самого большого из чисел, для которых оно определяется.

Наименьшее общее кратное (НОК). Свойства.

Коммутативность:

Ассоциативность:

В частности, если и — взаимно-простые числа , то:

Наименьшее общее кратное двух целых чисел m и n является делителем всех других общих кратных m и n . Более того, множество общих кратных m, n совпадает с множеством кратных для НОК(m, n ).

Асимптотики для могут быть выражены через некоторые теоретико-числовые функции.

Так, функция Чебышёва . А также:

Это следует из определения и свойств функции Ландау g(n) .

Что следует из закона распределения простых чисел.

Нахождение наименьшего общего кратного (НОК).

НОК(a, b ) можно вычислить несколькими способами:

1. Если известен наибольший общий делитель , можно использовать его связь с НОК:

2. Пусть известно каноническое разложение обоих чисел на простые множители:

где p 1 ,...,p k — различные простые числа, а d 1 ,...,d k и e 1 ,...,e k — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении).

Тогда НОК (a ,b ) вычисляется по формуле:

Другими словами, разложение НОК содержит все простые множители , входящие хотя бы в одно из разложений чисел a, b , причём из двух показателей степени этого множителя берётся наибольший.

Пример :

Вычисление наименьшего общего кратного нескольких чисел может быть сведено к нескольким последовательным вычислениям НОК от двух чисел:

Правило. Чтобы найти НОК ряда чисел, нужно:

— разложить числа на простые множители;

— перенести во множители искомого произведения самое большое разложение (произведение множителей самого большого числа из заданных), а потом добавить множители из разложения других чисел, которые не встречаются в первом числе или стоят в нем меньшее число раз;

— полученное произведение простых множителей будет НОК заданных чисел.

Любые два и более натуральных чисел имеют свое НОК. Если числа не кратны друг другу или не имеют одинаковых множителей в разложении, то их НОК равно произведению этих чисел.

Простые множители числа 28 (2, 2, 7) дополнили множителем 3 (числа 21), полученное произведение (84) будет наименьшим числом, которое делится на 21 и 28 .

Простые множители наибольшего числа 30 дополнили множителем 5 числа 25, полученное произведение 150 больше самого большого числа 30 и делится на все заданные числа без остатка. Это наименьшее произведение из возможных (150, 250, 300...), которому кратны все заданные числа.

Числа 2,3,11,37 — простые, поэтому их НОК равно произведению заданных чисел.

Правило . Чтобы вычислить НОК простых чисел, нужно все эти числа перемножить между собой.

Еще один вариант:

Чтобы найти наименьшее общее кратное (НОК) нескольких чисел нужно:

1) представить каждое число как произведение его простых множителей, например:

504 = 2 · 2 · 2 · 3 · 3 · 7 ,

2) записать степени всех простых множителей:

504 = 2 · 2 · 2 · 3 · 3 · 7 = 2 3 · 3 2 · 7 1 ,

3) выписать все простые делители (множители) каждого из этих чисел;

4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел;

5) перемножить эти степени.

Пример . Найти НОК чисел: 168, 180 и 3024.

Решение . 168 = 2 · 2 · 2 · 3 · 7 = 2 3 · 3 1 · 7 1 ,

180 = 2 · 2 · 3 · 3 · 5 = 2 2 · 3 2 · 5 1 ,

3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 2 4 · 3 3 · 7 1 .

Выписываем наибольшие степени всех простых делителей и перемножаем их:

НОК = 2 4 · 3 3 · 5 1 · 7 1 = 15120.

В этом уроке мы поговорим о том как вычислять НОД и НОК. Дело в том, что элементарные арифметические вычисления должен уметь делать любой программист, так как алгоритм вычисления можно встретить во многих программах. Тем более вы их уже должны знать, если вы учились в школе 5 классе.

Наибольший общий делитель. НОД.

Для нахождения общего делителя вам нужно знать следующее:

Запомните: наибольший общий делитель (НОД) двух целых чисел – это наибольшее целое число, на которое делятся оба исходных числа без остатка. Однако одно из исходных чисел должно быть большее нуля.
Запомните: если у вас одно из двух чисел ноль, то НОД будет, то число что больше ноля.
Запомните: существует понятие взаимно-простых чисел, у которого нет общих делителей, кроме единицы. К примеру число 5 и 4, НОД этих чисел будет равен 1, так как если 5 разделить на 4 вы не получите целое число без остатка, следовательно НОД=1

Все остальные числа, у которых НОД больше 1, вычисляются по принципу бинарного алгоритма или с помощью алгоритма Евклида. В этой статье мы подробно разберем алгоритм Евклида, который еще называют взаимным вычитанием, поскольку НОД получается при последовательном вычитании меньшего из большего. Используем алгоритм Евклида в нашем примере НОД(12, 30). По алгоритму Евклида нам надо вычесть из большее меньшее, то есть из 30-12-12=6 В числе 30 у нас может поместиться число 12 только два раза, число 12 называют кратным, и остатком останется число 6. Теперь нам надо из числа 30 отнять кратное числа 6, которое у нас получилось, 30-6-6-6-6-6=5 НОД числа 12 и 30 будет равен 6. Так как нам надо найти именно наибольший делитель в нашем случаи 6 больше 5, следовательно НОД(12,30)=6. Как видите ничего сложного, теперь давайте составим блок схему.

Блок-схема «Алгоритм Евклида»

рис.1

Если число a и b равно, НОД этих чисел будет любое из них, так как они могут делиться друг на друга. Если a и b не равны, мы их сравниваем a, если a меньше чем b то их надо поменять местами в a присвоить значение b, в b присвоить значение а и перейти к следующему вычислению описанного ниже. Если a больше чем b то, надо из а вычесть b , результат сохранить в a , и так до тех пор, пока а не станет равно b . Рассмотрим на примере.

Пример НОД(12,30).

  • 12=30 | a==b; //в нашем случаи 12 не равно 30
  • 12<30 | a
  • 30 12 | a==b; b==a; //меняем местами
  • 30-12=18 | a=a-b;//производим вычитание
  • 18=12| a==b;//равно ли а и b
  • 18<12| ab
  • 18-12=6|a=a-b; //производим вычитание
  • 6=12|a==b; //в нашем случаи 6 не равно 12
  • 6<12|a
  • 6 12| a==b; b==a; //меняем местами
  • 12-6=6|a=a-b;//производим вычитание
  • 6=6| a==b; //в нашем случаи 6 равно 6
  • НОД(12,30)=6;

Наименьшее общее кратное(НОК).

НОК-это число которое из двух и более натуральных чисел является наименьшим натуральным числом, которое само делится нацело, и каждое из исходных чисел.

Самый простой и быстрый способ в плане реализации программного кода, это первоначально вычислить НОД двух чисел, затем произведение исходных двух целых чисел a и b разделить на НОД. Посмотрим на примере как это выглядет. Возьмем за пример все те же цифры 12 и 30 как мы помним наибольшее общее кратное равнялось 6. НОД=6 Следовательно по формуле НОК=a*b/НОД. НОК=12*30/6=60 Есть и другие варианты вычисления НОК к примеру каноническое разложение чисел. Рассмотрим пример, первоначально нам надо выяснить какое из чисел больше, потом мы раскладываем числа на кратные 12= 2 *2* 3 , и число 30= 2 * 3 *5 Вычисляем произведение кратных чисел из числа 30, так как оно является наибольшим. В следующей операции, одинаковые цифры вычеркиваются, как это сделал я из большего меньшее, а оставшиеся кратные числа из 12 умножаются друг на друга, у нас осталось только число 2, которое умножается на произведение кратных чисел из 30, в результате вычисления вы и получите НОК. Выглядет это следующим образом НОК=2*3*5*2=60 Хорошо это можно представить в виде столбиков, как это можно видеть из рис. 2.

рис. 2

В целом ничего сложного, главное не запутаться, сейчас мы нарисуем блок схему наименьшего общего кратного (НОК).

Блок схема Наименьшего общего кратного (НОК)

рис 3.

Алгоритм работы программы описан вначале, статьи о НОК.

Но как же быть если нам надо к примеру найти НОД трех и более натуральных чисел, или найти НОК трех или более натуральных чисел. Тут ничего сложного инструкцию по нахождению НОД из 3 чисел и НОК смотрим ниже.

НОД трех чисел:

  • Сравниваем все числа К примеру a
  • Начинаем вычисления с больших чисел к меньшим
  • Вычисляем НОД по аналогии с двумя числами a и b
  • Вычисляем по аналогии чисел НОД(a,b) и с Пример: НОД(a,b,c)=НОД((НОД(a,b)),с);
  • НОД(12,30,60)
  • 12<30<60
  • НОД(60,30)=30
  • НОД(30,12)=6

Точно так же производиться вычисления НОД из четырех чисел из пяти итд. По аналогии с НОД вычисляется и НОК с тремя и более числами. Приведу в пример НОД трех чисел блок схему алгоритма смотрите рис. 4.

Блок схема НОД алгоритма трех чисел, четырех чисел итд.

рис. 4

Разберем по подробнее работу программы блок схемы из рис. 4.

  • У нас подается 3 числа, но их может быть сколько угодно.
  • Их мы записываем в массив array.
  • Выполняем метод sort(); Это мой метод он принимает массив чисел, делает сортировку по убыванию, пузырьковым методом, о нем вы можете прочитать из уроков о массивах.
  • Выполняем метод nod(), который принимает первые два числа. Я создал метод по аналогии как написано выше в этой статье.
  • В следующем блоке я помещаю в тело цикла метод nod(), который присваиваю возвращаемое число из метода nod() переменной a.
  • Выводим результат.
  • Завершаем работу программы.

.

Пока писал статью, написал программу НОК и НОД вычисления, которую можете скачать с сайта. Работа программы очень простая, достаточно в текстовое поле вписать цифры через пробел или запятую, нажать на кнопку вычислить или Enter и программа выведет результат. Программа написана на языке java. Может запускаться со всех систем.


рис 5.

Скачать калькулятор НОК и НОД .

error: