В третьем периоде 5 группе главной подгруппе. Общая характеристика элементов главной подгруппы V группы. снижению энергии активации

«Названия химических элементов» - “Только упорством и трудом можно достичь результатов”. Другие названия напрямую связаны с мифами древних греков. Д.И. Менделеев. Цели. Автор презентации. Нескучного труда вам!!! Дорогие ребята! Свинец. K. Заполните клетки кроссворда русскими названиями следующих химических элементов: 1. Cl. 2. Zn. 3. Br. 4. K. 5. Ni.

«Элементы статистики» - Для вычисления числа интерваловрекомендуется формула Стерджерса r ? 1+3,322 lg n Длина интервала вычисляется по формуле: h = (xmax-xmin)/r. «Статистическое мышление станет со временем такой же необходимостью, как и навыки к письму и чтению». Основные понятия. Зарегистрировав продолжительность работы 65 электронных ламп, получили следующие результаты:

«Химические свойства» - Химические свойства солей. Генетическая связь между классами неорганических соединений. Задания из ЕГЭ по химии. Классификация кислот. Классы неорганических соединений. Классификация оснований. А= N + Р Химический элемент- вид атомов с определенным зарядом ядра. Проверь свои знания. Строение атома. Определение.

«Периодическая система химических элементов» - Программированная работа по перфокартам. Дмитрий Иванович Менделеев 1834-1907. Вокруг тебя творится мир живой. Станция узнавай-ка «Расскажи мне обо мне». Проверь себя: 12-14 балла – «4» -желтый вагончик. А. 35 Б. 44 В. 45 Г. 80 3. Чему равно массовое число атома меди? 5 верных ответов – «3» балла. А. 2 Б. 3 В. 5 Г. 11.

«Химические средства» - Гидрофильная «голова». Получают из животных и растительных жиров, нафтеновых кислот, канифоли, таллового масла. Поэтому гидроксид калия иначе называют едкое кали. Раствор гидроксида натрия в воде мылкий на ощупь и очень едкий. Берегите окружающую среду и свое здоровье. Предисловие. Химические средства в быту.

«Элементы комбинаторики» - Что такое размещения? Записать формулу для нахождения числа сочетаний? Что такое факториал? Тема урока: «элементы комбинаторики» (практикум). Пусть имеется n элементов и требуется выбрать один за другим некоторые k элементов. Подбор комбинаторных задач. Записать формулу для нахождения числа размещений?

Подгруппу азота составляют пять элементов: азот, фосфор, мышьяк, сурьма и висмут. Это р-элементы V группы периодической системы Д. И. Менделеева.
На наружном энергетическом уровне атомы этих элементов содержат пять электронов, которые имеют конфигурацию ns2np3 и распределены следующим образом:

Поэтому высшая степень окисления этих элементов +5, низшая -3, характерна и +3.
Наличие трех неспаренных электронов на наружном уровне говорит о том, что в невозбужденном состоянии атомы элементов имеют валентность 3. Наружный уровень атома азота состоит только из двух подуровней - 2s и 2р. У атомов же остальных элементов этой подгруппы на наружных энергетических уровнях имеются вакантные ячейки d-подуровня. Следовательно, один из s-электронов наружного уровня может при возбуждении перейти на d-подуровень того же уровня, что приводит к образованию 5 неспаренных электронов.


внешняя электронная оболочка фосфора (невозбужденный атом)


внешняя электронная оболочка возбужденного атома фосфора.

Таким образом, фосфор, мышьяк, сурьма и висмут в возбужденном состоянии имеют 5 неспаренных электронов, и валентность их в этом состоянии равна 5.
В атоме азота возбудить электрон подобным образом нельзя вследствие отсутствия d-подуровня на втором уровне. Следовательно, пятивалентным азот быть не может, однако он может образовать четвертую ковалентную связь по донорно-акцепторному механизму за счет неподеленной электронной пары 2s2. Для атома азота возможен и другой процесс. При отрыве одного из двух 2s-электронов азот переходит в однозарядный четырехвалентный ион N+.

От азота к висмуту радиусы атомов увеличиваются, а ионизационные потенциалы уменьшаются. Восстановительные свойства нейтральных атомов усиливаются от N к Bi, а окислительные ослабевают (см. табл. 21).
С водородом азот, фосфор и мышьяк образуют полярные соединения RH3, проявляя отрицательную степень окисления -3. Молекулы RH3 имеют пирамидальную форму. В этих соединениях связи элементов с водородом более прочные, чем в соответствующих соединениях элементов подгруппы кислорода и особенно подгруппы галогенов. Поэтому водородные соединения элементов подгруппы азота в водных растворах не образуют ионов водорода.

С кислородом элементы подгруппы азота образуют оксиды общей формулы R2O3 и R2O5. Оксидам соответствуют кислоты HRO2 и HRO3 (и ортокислоты H3RO4, кроме азота). В пределах подгруппы характер оксидов изменяется так: N2O3 - кислотный оксид; Р4О6 - слабокислотный оксид; As2O3 - амфотерный оксид с преобладанием кислотных свойств; Sb2O3 - амфотерный оксид с преобладанием основных свойств; Bi2O3 - основной оксид. Таким образом, кислотные свойства оксидов состава R2O3 и R2O5 уменьшаются с ростом порядкового номера элемента.
Как видно из табл. 21, внутри подгруппы от азота к висмуту убывают неметаллические свойства и возрастают металлические. У сурьмы эти свойства выражены одинаково, у висмута преобладают металлические, у азота - неметаллические свойства. Фосфор, мышьяк и сурьма образуют несколько аллотропных соединения.

Азот.

Получение

В лабораториях его можно получать по реакции разложения нитрита аммония:

Реакция экзотермическая, идёт с выделением 80 ккал (335 кДж), поэтому требуется охлаждение сосуда при её протекании (хотя для начала реакции требуется нагревание нитрита аммония).

Практически эту реакцию выполняют, добавляя по каплям насыщенный раствор нитрита натрия в нагретый насыщенный раствор сульфата аммония, при этом образующийся в результате обменной реакции нитрит аммония мгновенно разлагается.

Выделяющийся при этом газ загрязнён аммиаком, оксидом азота (I) и кислородом, от которых его очищают, последовательно пропуская через растворы серной кислоты, сульфата железа (II) и над раскалённой медью. Затем азот осушают.

Ещё один лабораторный способ получения азота - нагревание смеси дихромата калия и сульфата аммония (в соотношении 2:1 по массе). Реакция идёт по уравнениям:

Наиболее чистый азот можно получить разложением азидов металлов:

Так называемый «воздушный», или «атмосферный» азот, то есть смесь азота с благородными газами, получают путём реакции воздуха с раскалённым коксом, при этом образуется так называемый «генераторный», или «воздушный», газ - сырьё для химических синтезов и топливо. При необходимости из него можно выделить азот, поглотив монооксид углерода.

Молекулярный азот в промышленности получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки и станции, в которых используется метод адсорбционного и мембранного газоразделения.

Один из лабораторных способов - пропускание аммиака над оксидом меди (II) при температуре ~700 °C:

Аммиак берут из его насыщенного раствора при нагревании. Количество CuO в 2 раза больше расчётного. Непосредственно перед применением азот очищают от примеси кислорода и аммиака пропусканием над медью и её оксидом (II) (тоже ~700 °C), затем сушат концентрированной серной кислотой и сухой щёлочью. Процесс происходит довольно медленно, но он того стоит: газ получается весьма чистый.

Сходство элементов:


Одинаковая структура внешнего электронного слоя атомов ns 2 np 3 ;


Р-элементы;


Высшая с. о. равна +5;


Низшая с. о. равна -3 (для Sb и Bi малохарактерна).


Для элементов главной подгруппы V группы иногда используется групповое название «пниктогены», введенное по аналогии с термином «галогены» и «халькогены» и образованное от символов элементов фосфора Р и азота N.

Валентные состояния атомов

Для атомов Р, As, Sb, Bi возможны 2 валентных состояния:


Основное ns 2 np 3

Возбужденное ns 1 np 3 nd 1

Отличие азота от других элементов подгруппы

1. В связи с отсутствием в атоме азота d-орбиталей на внешнем электронном слое число ковалентных свяязей, образуемых атомом азота по обменному механизму, не может быть больше 3-х.


2. Наличие неподеленной электронной пары на 2s-подуровне атома азота обусловливает возможность образования ковалентной связи по донорно-акцепторному механизму. Таким образом, высшая валентность N равна IV.


3. В соединениях с кислородом азот проявляет степени окисления +1, +2, +3, +4, +5.

Вертикальное изменение свойств элементов и образуемых ими веществ

В отличие от галогенов и халькогенов, в главной подгруппе V группы наблюдается более резкое изменение свойств элементов и образуемых ими простых веществ по мере увеличения заряда ядра и радиуса атомов:


Вертикальное изменение свойств элементов и образуемых ими простых веществ

неметаллы

металл с некоторыми признаками неметалличности

Оксиды и гидроксиды

Азот и его кислородные соединения рассматриваются отдельно, в силу целого ряда отличий.

Э 2 O 3 и соответствующие гидроксиды

Р 2 O 3 (Р 4 O 6) кислотный оксид


As 2 O 3 кислотный оксид с признаками амфотерности

Sb 2 O 3 амфотерный оксид

Bi 2 O 3 основный оксид

Э 2 O 5 и соответствующие гидроксиды

Р 2 O 5 (Р 4 O 10) кислотный оксид

As 2 O 5 кислотный оксид

Sb 2 O 5 кислотный оксид

Bi 2 O 5 амфотерный непрочный

HPO 3 (H 3 PO 4)

слабые кислоты

Кислотные свойства ослабевают

Основные свойства усиливаются

Соединения с водородом ЭН 3

Элементы главной подгруппы V группы образуют летучие соединения с водородом, представляющие собой ядовитые газы с характерными запахами. Являются сильными восстановителями. В отличие от водородных соединений неметаллов VII и VI групп, в водных растворах не образуют ионов Н + т. е. не проявляют кислотных свойств.

К главной подгруппе V группы периодической системы принад­лежат азот, фосфор, мышьяк, сурьма и висмут.

Эти элементы, имея пять электронов в наружном слое атома, характеризуются в целом как неметаллы. Однако способность к присоединению электронов выражена у них значительно слабее, чем у соответствующих элементов VI и VII групп. Благодаря наличию пяти наружных электронов, высшая положительная окисленность элементов этой подгруппы равна -5, а отрицательная - 3. Вследствие относительно меньшей электроотрицательности связь рассматриваемых элементов с водородом менее полярна, чем связь с водородом элементов VI и VII групп. Поэтому водородные соединения этих элементов не отщепляют в водном растворе ионы водорода H, таким образом, не обладают кислотными свойствами.

Физические и химические свойства элементов подгруппы азота изменяются с увеличением порядкового номера в той же последо­вательности, которая наблюдалась в ранее рассмотренных груп­пах, Но так как неметаллические свойства выражены у слабее, чем у кислорода и тем более фтора, то ослабление этих свойств при переходе к следующим элементам влечет за собой по­явление и нарастание металлических свойств. Последние заметны уже у мышьяка, сурьма приблизительно в равной степени обладает теми и другими свойствами, а у висмута металлические свойства преобладают над неметаллическими.

ОПИСАНИЕ ЭЛЕМЕНТОВ.

АЗОТ (от греч. ázōos - безжизненный, лат. Nitrogenium), N, химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14,0067; бесцветный газ, не имеющий запаха и вкуса.

Историческая справка. Соединения азота - селитра, азотная кислота, аммиак - были известны задолго до получения азота в свободном состоянии. В 1772 Д. Резерфорд, сжигая фосфор и др. вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им "удушливым воздухом", не поддерживает дыхания и горения. В 1787 А. Лавуазье установил, что "жизненный" и "удушливый" газы, входящие в состав воздуха, это простые вещества, и предложил название "азот". В 1784 Г. Кавендиш показал, что азот входит в состав селитры; отсюда и происходит латинское название азот (от позднелатинское nitrum - селитра и греческое gennao - рождаю, произвожу), предложенное в 1790 Ж. А. Шапталем. К началу 19 в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с др. элементами в качестве связанного азота. С тех пор "связывание" азота воздуха стало одной из важнейших технических проблем химии.

Распространённость в природе. Азот - один из самых распространённых элементов на Земле, причём основная его масса (около 4´1015 т) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N2) составляет 78,09% по объёму (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и окислов. Среднее содержание азота в литосфере 1,9´10-3% по массе.

Природные соединения азота. - хлористый аммоний NH4Cl и различные нитраты (см. Селитры.) Крупные скопления селитры характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитры были главным поставщиком азота для промышленности (сейчас основное значение для связывания азота имеет промышленный синтез аммиака из азота воздуха и водорода). Небольшие количества связанного азота находятся в каменном угле (1-2,5%) и нефти (0,02-1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1%) и в живых организмах (0,3%).

Хотя название "азот" означает "не поддерживающий жизни", на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16 - 17% азота. В организмах плотоядных животных белок образуется за счёт потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота.

В природе осуществляется круговорот азота, главную роль в котором играют микроорганизмы - нитрофицирующие, денитрофицирующие, азотфиксирующие и др. Однако в результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обеднёнными азотом. Дефицит азота характерен для земледелия почти всех стран, наблюдается дефицит азота и в животноводстве ("белковое голодание"). На почвах, бедных доступным азотом, растения плохо развиваются. Азотные удобрения и белковая подкормка животных - важнейшее средство подъёма сельского хозяйства. Хозяйственная деятельность человека нарушает круговорот азота. Так, сжигание топлива обогащает атмосферу азотом., а заводы, производящие удобрения, связывают азот воздуха. Транспортировка удобрений и продуктов сельского хозяйства перераспределяет азот на поверхности земли.

Азот - четвёртый по распространённости элемент Солнечной системы (после водорода, гелия и кислорода).

Изотопы, атом, молекула. Природный азот состоит из двух стабильных изотопов: 14N (99,635%) и 15N (0,365%). Изотоп 15N применяют в химических и биохимических исследованиях в качестве меченого атома. Из искусственных радиоактивных изотопов азота наибольший период полураспада имеет 13N (T1/2 - 10,08 мин), остальные весьма короткоживущие. В верхних слоях атмосферы, под действием нейтронов космического излучения, 14N превращается в радиоактивный изотоп углерода 14C. Этот процесс используют и в ядерных реакциях для получения 14C. Внешняя электронная оболочка атома азота. состоит из 5 электронов (одной неподелённой пары и трёх неспаренных - конфигурация 2s22p3). Чаще всего азот. в соединениях З-ковалентен за счёт неспаренных электронов (как в аммиаке NH3). Наличие неподелённой пары электронов может приводить к образованию ещё одной ковалентной связи, и азот становится 4-ковалентным (как в ионе аммония NH4+). Степени окисления азота меняются от +5 (в N205) до -3 (в NH3). В обычных условиях в свободном состоянии азот образует молекулу N2, где атомы N связаны тремя ковалентными связями. Молекула азота очень устойчива: энергия диссоциации её на атомы составляет 942,9 кДж/моль (225,2 ккал/моль), поэтому даже при t около 3300°C степень диссоциации азот. составляет лишь около 0,1%.

Физические и химические свойства. Азот немного легче воздуха; плотность 1,2506 кг/м3 (при 0°C и 101325 н/м2 или 760 мм рт. ст.), tпл -209,86°C, tкип -195,8?C. А. сжижается с трудом: его критическая температура довольно низка (-147,1 °C), а критическое давление высоко 3,39 Мн/м2 (34,6 кгс/см2); плотность жидкого азота 808 кг{м3. В воде азот менее растворим, чем кислород: при 0°C в 1 м3 Н2О растворяется 23,3 г азота. Лучше, чем в воде, азот растворим в некоторых углеводородах.

Только с такими активными металлами, как литий, кальций, магний, азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения азота с кислородом N2O, NO, N2O3, NO2 и N2O5. Из них при непосредственном взаимодействии элементов (4000оC) образуется окись NO, которая при охлаждении легко окисляется далее до двуокиси NO2. В воздухе окислы азота образуются при атмосферных разрядах. Их можно получить также действием на смесь азота с кислородом ионизирующих излучений. При растворении в воде азотистого N2О3 и азотного N2О5 ангидридов соответственно получаются азотистая кислота HNO2 и азотная кислота HNO3, образующие соли - нитриты и нитраты. С водородом азот соединяется только при высокой температуре и в присутствии катализаторов, при этом образуется аммиак NH3. Кроме аммиака, известны и другие многочисленные соединения азота с водородом, например гидразин H2N-NH2, диимид HN-NH, азотистоводородная кислота HN3(H-N-NºN), октазон N8H14 и др.; большинство соединений азота с водородом выделено только в виде органических производных. С галогенами азот непосредственно не взаимодействует, поэтому все галогениды азот получают только косвенным путём, например фтористый азот NF3- при взаимодействии фтора с аммиаком. Как правило, галогениды азота - малостойкие соединения (за исключением NF3); более устойчивы оксигалогениды азота - NOF, NOCI, NOBr, N02F и NO2CI. С серой также не происходит непосредственного соединения азота; азотистая сера N4S4 получается в результате реакции жидкой серы с аммиаком. При взаимодействии раскалённого кокса с азотом образуется циан (CN).;. Нагреванием азота с ацетиленом C2H2 до 1500оC может быть получен цианистый водород HCN. Взаимодействие азота с металлами при высоких температурах приводит к образованию нитридов (например, Mg3N2).

Азот (лат. Nitrogenium – рождающий селитры), химический элемент второго периода 5 группы, главной подгруппы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде – газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N2, обладающих высокой прочностью. Относится к неметаллам. Природный азот состоит из нуклидов 14N (содержание в смеси 99,635% по массе) и 15N. Конфигурация внешнего электронного слоя 2s2 2p3. Радиус нейтрального атома азота 0,074 нм, радиус ионов: N3- - 0,132; N3+ - 0,030 и N5+ - 0,027 нм. Энергии последовательной ионизации нейтрального атома азота равны, соответственно, 14,53; 29,60; 47,45; 77,47 и 97,89 эВ. По шкале Полинга электроотрицательность азота 3,05. Тип кристаллической решетки – молекулярная.




Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием с образованием твердого нитрида лития Li3N. 6Li+N2 2Li3N. В соединениях проявляет различные степени окисления (от -3 до +5). С водородом образует аммиак NH3, N2+3H2 2NH3. Косвенным путем (не из простых веществ) получают гидразин N2H4 и азотистоводородную кислоту HN3. Соли этой кислоты – азиды. Известно несколько оксидов азота. С галогенами азот непосредственно не реагирует, косвенными путями получены NF3, NCl3, NBr3 и NI3, а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF3).


Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые – при хранении) на простые вещества. Так NI3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI3 взрывается: 2NI3 N2+3I2. Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами. При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы M3N2, которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например: Ca3N2+6H2O 3Ca(OH)2+2NH3


Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe2N и Fe4N. При нагревании азота с ацетиленом С2Н2 может быть получен цианистый водород НСN. Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота HNO3, ее соли нитраты, а также азотистая кислота HNO2 и ее соли нитриты. N2+O2 2NO 3Ca+N2 Ca3N2 2NO+O2 2NO2 4NO2+O2+2H2O 4HNO3


В природе свободный (молекулярный) азот входит в состав атмосферного воздуха (в воздухе 78,09% по объему и 75,6 по массе азота), а в связанном виде – в состав двух селитр: натриевой NaNO3(чилийская селитра) и калиевой KNO3(индийская селитра) – и ряда других соединений. По распространенности в земной коре азот занимает 17-е место, на его долю приходится 0,0019% земной коры по массе. Несмотря на свое название, азот присутствует во всех живых организмах (1-3% на сухую массу), являясь важнейшим биогенным элементом. Он входит в состав молекул белков, нуклеиновых кислот, коферментов, гемоглобина, хлорофилла и многих других биологически активных веществ. Некоторые, так называемые азотфиксирующие, микроорганизмы способны усваивать молекулярный азот воздуха, переводя его в соединения, доступные для использования другими организмами.


В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжимают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (-195,8), чем другого компонента воздуха – кислорода (-182,9), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись «азот». Хранят жидкий азот в сосудах Дьюара. В лаборатории чистый («химический») азот получают добавляя при нагревании насыщенный раствор хлорида аммония NH4Cl к твердому нитриту натрия NaNO2: NaNO2+NH4Cl NaCl+N2+2H2O. Можно также нагревать твердый нитрит аммония: NH4NO2 N2+2H2O


В промышленности газ азот используют главным образом для получения аммиака. Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент, его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения.


Оксид азота (1) N2O закись азота, «веселящий газ» Физические свойства: Газ, бесцветный, запах сладковатый, приятный привкус, растворим в воде, t пл.= -91 C, t кип.= -88,5 С, анестезирующее средство, тяжелее воздуха, негорючий, не поддерживает горение. Получение NH4NO3 NO2 + 2H2O Химические свойства: 1)Разлагается при 700 С с выделением кислорода: 2N2O 2N2 + O2 Поэтому он поддерживает горение и является окислителем


2) C водородом: N2O + H2 N2 + H2O 3) Несолеобразующий Оксид азота (2) NO окись азота Физические свойства: Газ, бесцветный, плохо растворим в воде, tпл.= -164 С, tкип.= -152 С Получение: 1)Каталитическое окисление аммиака (промышленный способ) 4NH3 + 5O2 4NO + 6H2O 2) 3Cu + 8HNO3(разб.) 3Cu(NO3)2 + 2NO + 4H2O 3)Во время грозы N2 + O2 2NO


Химические свойства: 1)Легко окисляется кислородом и галогенами 2NO + O2 2NO2 2NO + Cl2 2NOCl (хлористый нитрозил) 2) Окислитель 2NO + 2SO2 2SO3 + N2 3) Несолеобразующий Оксид азота (3) N2O3 азотный ангидрид Физические свойства: Темно-синяя жидкость (при низких температурах), термически неустойчив, tпл.= -102 С, tкип.= 3,5 С. Выше tкип. Разлагается на NO и NO2, N2O3 соответствует азотистой кислоте (HNO2), которая существует только в разбавленных водных растворах.


Получение: NO2 + NO N2O3 Химические свойства: Все свойства кислотных оксидов N2O3 + 2NaOH 2NaNO2(нитрит натрия) + H2O Оксид азота (4) NO2 двуокись азота, диоксид азота Физические свойства: Бурый, ядовитый газ, раздражающий, резкий запах, удушливый, тяжелее воздуха, сильный окислитель, ядовит, tпл.= -11,2 С, tкип.= 21 С Получение: 1)2NO + O2 2NO2 2)Сu + 4HNO3(конц.) Cu(NO3)2 + 2NO2 + 2H2O


Химические свойства: 1)Кислотный оксид с водой 2NO2 + H2O HNO3 + HNO2 4NO2 + 2H2O + O2 4HNO3 с щелочами 2NO2 + 2NaOH NaNO2 + NaNO3 + H2O 2) Окислитель NO2 + SO2 SO3 + NO 3) Димеризация 2NO2(бурый газ) N2O4(бесцветная жидкость) Оксид азота (5) N2O5 азотный ангидрид


Физические свойства: Белое кристаллическое взрывчатое вещество, сильный окислитель, летучее, неустойчивое вещество. Получение: 1)2NO2 + O3 N2O5 + O2 2)2HNO3 + P2O5 2HPO3 + N2O5 Химические свойства: 1)Кислотный оксид N2O5 + H2O 2HNO3 2) Cильный окислитель 3) Легко разлагается (при нагревании – со взрывом): 2N2O5 4NO2 + O2

error: