Жидкостная хроматография сущность метода. ОФС.1.2.0005.15 Высокоэффективная жидкостная хроматография. Детекторы для вэжх

Введение

Хроматографический анализ является критерием однородности вещества: если каким-либо хроматографическим способом анализируемое вещество не разделилось, то его считают однородным (без примесей).

Принципиальным отличием хроматографических методов от других физико-химических методов анализа является возможность разделения близких по свойствам веществ. После разделения компоненты анализируемой смеси можно идентифицировать (установить природу) и количественно определять (массу, концентрацию) любыми химическими, физическими и физико-химическими методами.

Хроматография широко применяется в лабораториях и в промышленности для качественного и количественного анализа многокомпонентных систем, контроля производства, особенно в связи с автоматизацией многих процессов, а также для препаративного (в том числе промышленного) выделения индивидуальных веществ (например, благородных металлов), разделения редких и рассеянных элементов.

В соответствии с агрегатным состоянием элюента различают газовую (ГХ, GC) и жидкостную хроматографию (ВЭЖХ, HPLC).

Высокоэффективная жидкостная хроматография (ВЭЖХ, HPLC) используется для анализа, разделения и очистки синтетических полимеров, лекарственных препаратов, детергентов, белков, гормонов и др. биологически важных соединений. Использование высокочувствительных детекторов позволяет работать с очень малыми количествами веществ (10 -11 -10 -9 г), что исключительно важно в биологических исследованиях.

Метод ВЭЖХ осуществляется на различных жидкостных хроматографах. Современные жидкостные хроматографы предназначены для разделения сложных смесей веществ на отдельные компоненты и проведения качественного и количественного анализа компонентов разделяемой смеси.

высокоэффективная жидкостная хроматография пропифеназон

В связи с введением в практику фармацевтического производства России GMP. повышается значимость использования современных унифицированных методов анализа, как на предприятиях-производителях:, так и в системе государственного контроля качества лекарственных средств. Базовым методом анализа качества субстанций и готовых лекарственных средств в странах с развитой фармацевтической промышленностью (США, Англия. Япония, страны ЕС) является высокоэффективная жидкостная хроматография (ВЭЖХ). Данный метод по своим характеристикам соответствует требованиям количественного анализа около 80-90% препаратов.

К технике выполнения любых хроматографических определений предъявляются некоторые общие требования. Прежде всего, необходимо отметить те из них, которые вызывают у начинающих специалистов больше всего вопросов.

1. Кондиционирование помещения. В помещении, где устанавливается жидкостной хроматограф, не должно быть резких колебаний температуры.

Изменение температуры может привести к изменению удерживания, эффективности, и даже селективности разделения.

В летнюю жару в некондиционированных помещениях сильно затрудняется работа с нормально-фазовыми легкокипящими подвижными фазами. В течение дня происходит их постепенное испарение, которое приводит к изменению состава элюента.

При пониженных температурах появляются проблемы в работе с элюентами, обогащенными водой и/или содержащими спирты. Вязкость таких элюентов резко возрастает при понижении температуры, что приводит к повышению давления в системе.

Влияние небольших колебаний температуры на разделение можно устранить, термостатируя хроматографическую колонку, или всю жидкостную систему (что возможно не для всех хроматографов).

2. Качество электропитания. Большинство современных хроматографов оснащено системами стабилизации питания, однако, качество электропитания на месте также должно быть высоким. При недостаточно хорошем электропитании любой запуск серии определений в автоматическом режиме может окончиться неудачей из-за сбоя.

3. Чистота растворителей. Для приготовления подвижных фаз следует применять особо чистые растворители.

В общем случае, требования, предъявляемые к чистоте подвижной фазы, зависят от способа детектирования, метода элюирования (изократического или градиентного), чувствительности детектора к целевому аналиту и его концентрации.

При применении УФ детектирования требования к чистоте растворителей повышаются при переходе к коротковолновому диапазону, менее 230-240 нм. Для изократического элюирования при УФ детектировании на длинах волн, больших 220-240 нм, можно применять растворители марки "ос. ч." и воду-дистиллят. Все реагенты, добавляемые в подвижную фазу, также должны быть достаточно чистыми; кристаллические реагенты перед применением бывает полезно перекристаллизовать.

Для градиентного элюирования необходимо применять растворители марки "для жидкостной хроматографии" ("for liquid chromatography") и воду-бидистиллят. Особые требования в методе градиентного элюирования (в обращенно-фазовой хроматографии) предъявляются к чистоте водного буфера и воды в частности. Прежде всего это связано с тем, что на начальной стадии элюирования адсорбент поглощает из обогащенной водным буфером подвижной фазы загрязняющие компоненты, которые в дальнейшем элюируются и проявляются на хроматограмме в виде "горбов", "порогов" и отдельных пиков, сильно затрудняющих выделение полезных сигналов аналитов.

Наиболее чистые растворители требуются для проведения групповых определений следовых количеств веществ в режиме градиентного элюирования.

Для выполнения определений в градиентном режиме элюирования, а также прецизионных определений в изократическом режиме, подвижная фаза должна применяться однократно, то есть элюат должен сбрасываться или утилизироваться.

При изократическом элюировании, если нет особенных проблем с чувствительностью, отработанный элюент можно применять повторно. Система, в которой элюат после прохождения через детектор поступает обратно в емкость с подвижной фазой, называется "системой с рециклом". Особенно полезной такая система оказывается в случае проведения большого числа рутинных изократических определений на стандартных колонках (250х4.6, 150х4.6) при объемной скорости порядка 1 мл/мин. В этих случаях система с рециклом обеспечивает экономию до 200-300 мл органического растворителя в день. Такая экономная система позволяет применять для анализа очень чистые, дорогие растворители. Вопрос экономии дорогих растворителей стоит менее остро в случае применения микроколонок (80х2, 100х2), поскольку для проведения разделения требуется на порядок меньший объем подвижной фазы.

4. Дегазация растворителей. Растворители, применяющиеся в хроматографии для приготовления подвижных фаз, обычно содержат растворенный воздух. Особенно много воздуха содержит вода.

При работе на недегазированных элюентах пузырьки воздуха попадают в различные узлы жидкостной системы: насос, колонку, капилляры, детектор. При попадании воздуха в жидкостную систему на хроматограмме появляются высокие периодические шумы, вызванные колебанием давления в жидкостной системе. Это приводит к резкому уменьшению чувствительности анализа.

Для удаления воздуха их элюента проводят его дегазацию. Как правило, дегазируют только элюенты для обращенно-фазовых разделений - поскольку водноорганические смеси содержат значительные количества растворенного воздуха. Особенно тщательно дегазация должна осуществляться в случае градиентного элюирования, а также при применении флуориметрического детектирования.

В ходе градиентного элюирования в обращенно-фазовом режиме происходит смешивание двух элюентов - водноорганических смесей различного состава. Смешивание недегазированных элюентов приводит к интенсивному выделению растворенного воздуха, что критично для проведения определения в целом (на хроматограмме пузырьки воздуха регистрируются в виде резких "выбросов" на нулевой линии).

Чувствительность флуориметрического детектирования уменьшается при высоком содержании растворенного воздуха в подвижной фазе (происходит тушение флуоресценции). Таким образом, при применении флуориметрического детектирования дегазации элюента должно уделяться особое внимание.

Существует три основных способа дегазации подвижных фаз для жидкостной хроматографии.

а. Дегазация вакуумом - элюент выдерживают в колбе Кляйзена под вакуумом водоструйного насоса в течение нескольких минут. При проведении дегазации следует избегать кипения элюента.

б. Термическая дегазация применяется для дегазации водноорганических элюентов с высокой долей воды. Подвижную фазу помещают в колбу, которую не герметично закрывают пробкой, и оставляют в водной бане при температуре около 50єС. Через 10-15 минут колбу закрывают пробкой герметично и охлаждают ее под струей воды до комнатной температуры.

в. Дегазация ультразвуком. Подвижную фазу несколько минут обрабатывают ультразвуком, а затем дают ей отстояться в течение 10-15 минут. Этот способ часто бывает недостаточно эффективен для дегазации водноорганических элюентов.

Современные насосные системы для жидкостной хроматографии комплектуются системами автоматической дегазации. Тем не менее, при проведении градиентных анализов обе подвижные фазы лучше дегазировать предварительно и "вручную", по одному из приведенных методов.

5. Фильтрация подвижной фазы. Для обеспечения бесперебойной работы насоса подвижную фазу желательно фильтровать под вакуумом с применением мембранного фильтра.

6. Промывка колонки и узлов жидкостной системы. После работы с водноорганическими подвижными фазами, содержащими соли и кислоты, всю жидкостную систему (включая колонку) следует промыть дистиллированной водой с добавлением 5-10% органического растворителя. Такая промывка делается для того, чтобы в нерабочее время дополнительно не изнашивались узлы жидкостной системы хроматографа и сама неподвижная фаза.

Не проведение такой промывки приводит, прежде всего, к тому, что после остановки насоса на его деталях и стенках кюветы детектора из элюента осаждаются соли. Это, в свою очередь, приводит к неустойчивой работе прибора в целом, а также преждевременному износу движущихся частей насоса. Регулярное отсутствие промывки системы от содержащих соли и кислоты элюентов может привести к сокращению времени жизни неподвижной фазы.

Добавка к промывочной воде некоторого количества органического растворителя необходима для предотвращения биологического загрязнения жидкостной системы.

7. Переход на новую подвижную фазу, которая не смешивается с предыдущей. Такой переход осуществляется через промежуточный растворитель, неограниченно смешивающийся с обеими подвижными фазами - обычно, через изопропанол или ацетон.

Для перехода с водного элюента на неполярный элюент жидкостную систему следует промыть водой с добавкой органического растворителя, затем снять хроматографическую колонку, промыть систему изопропанолом (ацетоном), промыть систему неполярным элюентом, установить новую колонку.

Для обратного перехода снимают хроматографическую колонку, промывают жидкостную систему изопропанолом (ацетоном), затем водным элюентом, затем ставят новую колонку.

При переходе от водного элюента к неполярному следует заранее убедиться, что материал уплотнений насоса рассчитан на работу с неполярными растворителями.

8. Фильтрация пробы. Если анализируемая проба содержит нерастворенную взвесь, то ее желательно отфильтровывать, пропуская пробу через мембранный фильтр, соединенный со шприцем. К сожалению, если пробы мало, менее миллилитра, то профильтровать ее таким способом становится практически невозможно.

При регулярном анализе проб, содержащих взвеси, входной фильтр на колонке (фрит) может засориться, что приведет прежде всего к увеличению давления в системе. В этом случае входной фильтр лучше заменить, а при отсутствии замены - промыть его в органическом растворителе с обработкой ультразвуком в течение 10-15 минут.

Наиболее оптимальным решением проблемы является применение ин-лайн фильтра перед колонкой. Ин-лайн фильтр содержит сменный фрит - такой же, как и на колонке. Замена фрита на ин-лайн фильтре является рутинной операцией, которая может проводиться достаточно часто.

9. Применение предколонок. При регулярном анализе "грязных" проб хроматографическая колонка достаточно быстро загрязняется и теряет свою разделительную способность. Известной альтернативой тщательной пробоподготовки в этом случае является применение предколонки, защищающей основную колонку от загрязнения.

Иногда пробоподготовку целесообразно вообще не проводить, а поставить в линию перед основной колонкой ин-лайн фильтр и предколонку. Преимуществами этой схемы являются простота и экспрессность анализов при меньшей затрате труда и реагентов.

10. Консервация хроматографических колонок. Перед достаточно длительным хранением хроматографические колонки промываются и заполняются растворителем, вполне определенным для каждого типа неподвижной фазы.

Так, хроматографические колонки для работы в нормально-фазовых системах обычно заполняются высококипящим углеводородом, например, изооктаном. Обращенные фазы промывают водой и заполняют ацетонитрилом, или на небольшой скорости подачи - изопропанолом. Фазы, предназначенные для работы с водными буферами, заполняются водой с небольшой добавкой азида натрия (бактериостатика).

Инструкции по хранению колонки могут указываться в ее паспорте.

11. Хранение водных буферов. В случае проведения рутинных определений бывает достаточно удобно готовить сразу большой объем водного буфера для приготовления подвижной фазы. К сожалению, водный буфер не может храниться больше нескольких дней, если не добавить в него азид натрия, бактериостатик. Очень плохо хранятся подвижные фазы на основе фосфатного буфера.

Иногда большой объем водного буфера готовят для того, чтобы "повысить воспроизводимость анализа". Вообще говоря, при таком подходе вопроизводимость анализа не повышается, а вот проблемы с хранением буфера появляются неизбежные.

Вообще же говоря, ответ на вопрос - готовить ли водный буфер на неделю или на один день? - определяется исключительно принципом удобства.

12. Регулярность проведения калибровки. Как правило, калибровку по стандарту проводят каждый день, или же каждый раз при приготовлении нового элюента.

Калибровка проводится при достижении стационарного состояния хроматографической системы; считываемыми параметрами являются время удерживания пика стандарта, его площадь (при спектрофотометрическом детектировании - на опорной длине волны), спектральные отношения (при применении сканирующего или диодно-матричного спектрофотометрического детектора).

В начале работы стандарт может быть проанализирован дважды - для подтверждения воспроизводимости времени удерживания.

1. Определение компонентов препарата "БИЦИЛЛИН-3" методом ВЭЖХ

Бициллин-3 является пенициллином пролонгированного действия и представляет собой смесь натриевой, новокаиновой и бензатиновой солей бензилпенициллина (БП). По действующей ВФС 42-3034-98 определение БП в препарате проводят с помощью ВЭЖХ, новокаин определяют спектрофотометрически, а бензатин (N,N1-дибензилэтилендиамин) экстрагируют эфиром из водного раствора, насыщенного хлоридом натрия. После выпаривания эфира бензатин определяют титрованием хлорной кислотой.

В Европейской Фармакопее содержание БП и бензатина в бензатиновой соли БП определяют с помощью градиентной ВЭЖХ в смеси метанола с раствором фосфата натрия при рН 3,5.

Цель работы - разработка метода ВЭЖХ в изократическом режиме для определения компонентов в бициллине-3.

Экспериментальная часть

Использовали бициллин-3 производства АКО "Синтез" (Курган). Исследование проводили на хроматографе фирмы "Waters" (США) с насосом модели 510, УФ-детектором модели 481 и инжектором модели 7125 (Rheodyne) с дозирующей петлей вместимостью 50 мкл. Для детектирования использовали длину волны 214 нм, при которой хорошо детектируются все анализируемые соединения. Регистрацию хроматограмм и расчет площадей пиков и основных параметров удерживания проводили с помощью персонального компьютера с аналого-цифровым преобразователем и программой "Мультихром".

Был изучен обращеннофазный вариант метода ВЭЖХ на колонке "Luna C18 (2)" размером 250 х 4,6 мм фирмы "Phenomenex" (США), поскольку колонка зарекомендовала себя ранее как относительно дешевая с улучшенной симметрией выхода пиков органических аминов. С этой же целью в качестве подвижной фазы использовали смесь ацетонитрила с буферным раствором, содержащим в качестве одного из компонетов триэтиламин, имеющим pH 5,0.

Исходный раствор для приготовления подвижной фазы - 2,5 М раствор фосфорной кислоты, который титровали триэтиламином до рН 5,0. Буферный раствор для ВЭЖХ получали разбавлением исходного раствора водой в 10 раз.750 мл полученного буферного раствора смешивали с 250 мл ацетонитрила. При этом значение кажущегося рН подвижной фазы повышалось до 5,7. Скорость подвижной фазы 1 мл/мин. Хроматографирование проводили при комнатной температуре. Время анализа 20 мин.

Поскольку входящие в состав препарата компоненты различаются по кислотно-основным свойствам - БП является кислотой, а новокаин и бензатин - основаниями, при увеличении рН их времена удерживания в интервале рН, где их ионизация меняется, сдвигаются в разные стороны. Поэтому путем изменения рН легко подобрать удобное удерживание анализируемых компонентов. Однако увеличение рН приводит к заметному ухудшению формы пика бензатина, а уменьшение - к недостаточному разрешению новокаина и продуктов гидролиза БП. Разделение компонентов бициллина-3 при указанных выше условиях представлено на рисунке. Времена удерживания новокаина, бензатина и БП составляли 4,2, 11,6 и 14,8 мин соответственно.

Существенным является выход пика новокаина между 2 пиками, представляющими собой продукты гидролиза БП. В связи с этим для лучшего разделения компонентов рекомендуется добавлять в подвижную фазу небольшие количества 2,5 М растворов фосфорной кислоты или триэтиламина и контролировать разделение хроматографированием смеси новокаина и БП, раствор которого хранился около суток при комнатной температуре.

Для количественного определения 20-25 мг бициллина-3 вносили в мерную колбу вместимостью 100 мл и растворяли в 20% водном растворе ацетонитрила. Использование для растворения метанола или его растворов вело к частичному метилированию БП. Увеличение концентрации ацетонитрила приводило к уширению пика новокаина. Верхний предел концентрации лекарственного вещества ограничен его растворимостью. Калибровочные графики для БП и бензатина получали с использованием натриевой соли БП и диацетата бензатина после соответствующего пересчета. Калибровочный график для БП линеен в области 0,1-0,5 мг/мл, для бензатина и новокаина - в области 0,01-0,05 мг/мл. Результаты определения компонентов в 5 сериях препарата представлены в табл.1, где каждое значение представляет собой среднее из 5 определений. Относительное среднее квадратичное отклонение составило 1,6% для новокаина, 3,4% для бензатина и 1,4% для БП.

Из табл.1 следует, что результаты количественного определения с помощью ВЭЖХ укладываются в допустимые пределы, регламентируемые НД.


Для подтверждения правильности предложенной методики были проанализированы компоненты бициллина-3 в модельных смесях, приготовленных смешением натриевой соли БП, бензатина диацетата и новокаина. Результаты приведены в табл.2. Результаты пересчитаны на исходные компоненты.

Каждое значение в графе "Найдено" табл.2 - средний результат 3 определений. Средняя величина относительного отклонения составила 2,2 % для бензатина, 0,9 % для новокаина и 0,8 % для БП, что коррелирует с относительными средними стандартными отклонениями, найденными при анализе компонентов в реальных пробах. Для бензатина разброс результатов несколько выше, чем для остальных компонентов, что объясняется низкой высотой и неправильной формой пика и соответственно большей ошибкой интегрирования. Другой причиной относительно больших ошибок при определении бензатина может явиться эффект памяти инжектора при анализе сильно адсорбирующихся веществ. Однако и такой разброс, несколько превышающий принятый для анализов с помощью метода ВЭЖХ, вполне допустим для определения бензатина.

Выводы

1. Разработана методика обнаружения и количественного определения компонентов в препарате "Бициллин-3".

2. Методика проверена на ряде серий препарата и подтверждена анализом модельных смесей известного состава.

2. ВЭЖХ в анализе препаратов, содержащих пропифеназон

Пропифеназон (4-изопропил-2,3-диметил-1-фенил-3-пиразолин-5-он; изопропилантипирин) относится к ненаркотическим анальгетикам пиразолонового ряда и входит в состав комбинированных безрецептурных препаратов. В настоящее время в лечебной практике широко используются таблетки каффетин (состав: пропифеназона-0,21 г, парацетамола-0,25 г, кофеина-0,05 г, кодеина фосфата-0,01 г) и саридон (парацетамола-0,25 г, пропифеназона-0,15 г, кофеина-0,05 г). Согласно существующей нормативной документации для подтверждения подлинности таблеток каффетина используется хроматография в тонком слое сорбента. Количественное определение предложено проводить в отдельных навесках препарата разными для каждого компонента методами: с помощью спектрофотометрии, титриметрии, сочетание тонкослойной хроматографии и спектрофотометрии. В нормативной документации на саридон парацетамол, кофеин и пропифеназон определяют методом ВЭЖХ на колонках длиной 12,5 см с сорбентом Merck Lichrospher C18 и подвижной фазой состава: метанол-0,01 М фосфорная кислота в соотношении 30: 70.

Цель настоящей работы - разработка методик обнаружения и количественного определения компонентов таблеток каффетина и саридона с помощью ВЭЖХ.

В работе использовали таблетки каффетина производства "Алкалоид Скопье" (Республика Македония), саридона производства "Лаборатория Рош Николас С. А.", Гайярд (Франция) и субстанции компонентов, входящих в их состав. Исследование проводили на отечественном микроколоночном жидкостном хроматографе "Милихром-4" с УФ-спектрофотометрическим детектором, колонкой длиной 8 см с обращенно-фазовым сорбентом Сепарон-С18 в качестве неподвижной фазы. Полярный характер анализируемых соединений, их хорошая растворимость в воде и ацетонитриле обусловили выбор водно-ацетонитрильных смесей в разных соотношениях в качестве подвижной фазы. Были испытаны подвижные фазы ацетонитрил - вода в соотношениях 9: 1; 7: 3; 6: 4; 8: 2 и ацетонитрил-вода-диэтиламин (3: 2: 0,2). Избегали использовать подвижные фазы с объемной долей органического растворителя более 80%, чтобы исключить нормально-фазовые взаимодействия, затрудняющие дальнейшее регулирование состава подвижной фазы. Объемная доля растворителя менее 5% приводит к функциональной неустойчивости подвижной фазы и невоспроизводимости времен удерживания. Введение в состав подвижной фазы диэтиламина в качестве модификатора позволило добиться разделения всех 4 компонентов таблеток каффетин. Известно, что на поверхности октадецилсиликагеля находится значительное количество остаточных силанольных групп, способных к ионообменному взаимодействию. Диэтиламин исключает из хроматографического процесса силанольные группы, улучшает форму пиков, сокращает время анализа и регулирует рН на поверхности силикагеля. Измерение проводили в следующих условиях: масштаб регистрации 2,0, время удерживания 0,8 с, скорость расхода элюента 50 мкл/мин, объем вводимой пробы 3 мкл. Детекцию пиков осуществляли при 2 длинах волн - 238 и 276 нм.

Идентификацию проводили по параметрам удерживания, которые определяли предварительно на стандартных растворах исследуемых веществ.

Компоненты таблеток каффетина разделены при использовании подвижной фазы ацетонитрил-вода-диэтиламин (3: 2,2: 0,2). Время удерживания парацетамола составило 3,08 мин, пропифеназона - 5,73 мин, кофеина - 4,0 мин, кодеина - 4,67 мин.

Компоненты саридона можно также разделить, используя подвижную фазу ацетонитрил-вода (8: 2). Время удерживания для парацетамола - 3,9 мин, пропифеназона - 5,11 мин, кофеина - 4,44 мин.

Для количественного определения применяли метод абсолютной калибровки. Прямая пропорциональная зависимость концентрации вещества от высоты пика наблюдалась для парацетамола в диапазоне 50-200 мкг/мл, для пропифеназона - 25-128 мкг/мл, кофеина - 20-50 мкг/мл, кодеина - 59-234 мкг/мл.

Метод ВЭЖХ имеет некоторые ограничения в анализе сложных смесей. При одновременном присутствии в смеси веществ в макро - и микроколичествах возникает перегрузка колонки, что оказывает влияние на качество разделения и форму выходящих пиков. В каффетине содержание кодеина фосфата по отношению к парацетамолу и пропифеназону в 21-25 раз меньше, поэтому рекомендуется жидкостная экстракция для отделения кодеина от остальных компонентов таблеток. Предварительно мы установили, что парацетамол, пропифеназон и кофеин извлекаются при однократной экстракции этилацетатом из водных растворов при рН 2,0 в количестве соответственно 87,43, 87,29 и 87,84%, а кодеин полностью остается в водном растворе и для его извлечения и концентрирования необходимо использовать хлороформ при рН 9,0-10,0.


Методика количественного определения парацетамола, пропифеназона и кофеина в таблетках саридона и каффетина.20 таблеток растирают в ступке в мелкий однородный порошок, отвешивают около 0,01 г (точная навеска) порошка растертых таблеток и помещают в мерную колбу вместимостью 25 мл, прибавляют 10 мл ацетонитрила и тщательно перемешивают.

Содержимое колбы доводят до метки ацетонитрилом, перемешивают и фильтруют. Раствор вводят в колонку хроматографа в объеме 3,0 мкл. Содержание парацетамола, пропифеназона и кофеина определяют методом абсолютной калибровки. Результаты определения приведены в табл.1 и 2, из которых видно, что полученные данные укладываются в допустимые пределы содержания по нормативной документации (НД).


Методика количественного определения кодеина фосфата в таблетках каффетина. Около 0,2 г растертых таблеток (точная навеска) растворяют в 20 мл воды, хорошо перемешивают до получения однородного раствора, фильтруют через фильтр для мелких и самых мелких осадков, фильтр промывают 10 мл очищенной воды. Раствор подкисляют 10% раствором серной кислоты до рН 2,0. Экстрагируют трижды этилацетатом порциями по 10 мл. Экстракты отбрасывают. К водному раствору добавляют 25% раствор аммиака до рН 9,0-10,0. Экстрагируют трижды хлороформом порциями по 10 мл. Объединенные хлороформные вытяжки помещают в фарфоровые чашки и испаряют при комнатной температуре. Сухие остатки растворяют в ацетонитриле, переносят в мерную колбу вместимостью 25 мл и доводят до метки тем же растворителем.3 мкл полученного раствора вводят в колонку хроматографа и определяют кодеин в описанных условиях. Результаты определения приведены в табл.3.


Для оценки точности предлагаемых методик и проверки воспроизводимости результатов были приготовлены и исследованы модельные смеси. Данные на примере таблеток саридона приведены в табл.4. Как видно из табл.4, относительная погрешность определения не превышает для парацетамола ±1, 19%, пропифеназона ±1,16%, кофеина ±1,63%.

Методика количественного определения компонентов таблеток саридона в модельных смесях. Отвешивают точные навески парацетамола (около 0,08 г), пропифеназона (около 0,05 г) и кофеина (около 0,016 г), переносят в мерную колбу вместимостью 50 мл, растворяют в небольшом объеме ацетонитрила и доводят до метки тем же растворителем. Отбирают аликвоту 2,5 мл и переносят в мерную колбу вместимостью 25 мл, объем до метки доводят тем же растворителем, перемешивают и фильтруют. Раствор вводят в колонку хроматографа в объеме 3 мкл.


Выводы

1. Разработана методика обнаружения компонентов таблеток каффетина и саридона с помощью ВЭЖХ.

Время удерживания для парацетамола составило 3,08 мин, для пропифеназона - 5,73 мин, кофеина - 4 мин и кодеина - 4,67 мин.

2. Предложен метод ВЭЖХ для количественного определения компонентов таблеток каффетина и саридона.

Относительная ошибка определения составила для парацетамола ±1, 19-1,21%, пропифеназона ±1,16-1,71%, кофеина ±1,22-1,63% и для кодеина ±2,95%.

3. Стандартизация препарата "Аданол"

Фармацевтической фирмой "Полисан" разработан ряд комплексных лекарственных препаратов метаболического действия, стимулирующих обменные процессы головного мозга, в том числе "Цитофлавин" (инъекции, таблетки) и "Аданол". "Аданол" обладает выраженными антигипоксическими и противоишемическими свойствами и является перспективным лекарственным средством для лечения больных с последствиями инсульта. Он представляет собой таблетированную лекарственную форму, покрытую кишечно-растворимой оболочкой.

В его состав входят янтарная кислота (ЯК), пирацетам (Пц), рибоксин (Рб), никотинамид (НА), пиридоксина гидрохлорид (ПГ), рибофлавина мононуклеотид (РФ).

Цель работы - разработка метода качественного и количественного определения ЯК в сложных многокомпонентных смесях на примере препарата "Аданол".

В работе использовали жидкостный хроматограф высокого давления фирмы "Shimadzu" (Япония) с УФ-детектором и колонкой Hypersil BDS C18 фирмы "Supelco Inc." зернением 5 мкм, длиной 250 мм с внутренним диаметром 4,6 мм. Подвижная фаза - водно-органическая фаза на основе фосфатного буфера (рН 2,6-7,0). Длина волны детектирования 206 нм. Режим анализа изократический, скорость элюирования 500 мкл/мин; объем проб 20 мкл. УФ-спектры сняты на спектрофотометре UV mini-1240 фирмы "Shimadzu".

Для количественного определения большинства субстанций, входящих в состав препарата, предложены спектрофотометрические методы анализа. Однако сравнение спектральных характеристик компонентов препарата показало, что области поглощения ЯК, ПГ, НА, Рб и Пц в УФ-зоне перекрывают друг друга (рис.1).


В связи с этим содержание их в смеси нельзя определять методом прямой спектрофотометрии и в таком случае целесообразно использовать метод ВЭЖХ. Только РФ имеет специфическую область поглощения более 350 нм (лmax=373, Е1% 1см=202 и лmax=445 нм, Е1% 1см=243), поэтому для него предложен качественный и количественный анализ спектрофотометрическим методом.

На основе полученных данных выбрана оптимальная рабочая длина волны для анализа 5 субстанций, составляющая лопт=206 нм (см. рис.1). Это значение является максимумом УФ-спектра ЯК, которая обладает наименьшим удельным поглощением (лmax=206 нм Е1% 1см= 5,8) по сравнению с остальными компонентами смеси (см. таблицу).

Поскольку все вещества, входящие в препарат, ионогенны, для их анализа целесообразно применять обращенно-фазную хроматографию с использованием неполярной неподвижной и полярной подвижной фаз. При обращенно-фазной хроматографии ионогенных соединений значение водородного показателя - один из факторов, который существенно влияет на эффективность разделения индивидуальных веществ. При работе с современными обращенно-фазными сорбентами в составе подвижной фазы обычно используют буферные растворы рН от 2,0 до 8,0. Так как выбранное оптимальное значение рабочей длины волны равно 206 нм, то лучше всего применять фосфатный буфер, потому что он не имеет положения в УФ-диапазоне длин волн более 200 нм.

Для изучения поведения ЯК при различных значениях рН были сняты ее спектры в фосфатных буферных растворах рН 7,0 и 2,6 (рис.2). При рН 2,6 наблюдается гипохромный эффект молекулярной формы ЯК - поглощение снижается в 3 раза по сравнению со спектром при рН 7,0 (при этом значении рН диссоциация ЯК полностью подавлена). С учетом этого оптимальным значением рН подвижной фазы является 7,0. Далее было изучено влияние состава и рН подвижной фазы на эффективность разделения компонентов препарата. При рН 2,6 не произошло полного разделения смеси на индивидуальные пики - Пц, На и ПГ не делятся и выходят первыми одним пиком, за ними следуют ЯК и Рб в виде индивидуальных пиков. При рН 5,5 также не было полного разделения компонентов. При рН 7,0 произошло полное разделение компонентов смеси. Все вещества выходили в виде отдельных пиков в следующей последовательности: ЯК, Пц, ПГ, НА и Рб. Однако процесс разделения длителен - 45-50 мин.

Для обеспечения большей элюирующей силы подвижной фазы и ускорения процесса разделения необходимо ввести в ее состав менее полярный органический растворитель. Из раство рителей, наиболее часто употребляемых в качестве элюирующих агентов в ВЭЖХ, по пределу прозрачности в УФ-свете при выбранной рабочей длине волны (лопт = 206 нм) мы могли применить ацетонитрил и метанол, у которых пределы прозрачности равны 195 и 205 нм соответственно.

При введении в состав подвижной фазы 2% метанола время процесса сократилось, однако пик НА имел высокую асимметрию и пик Рб накладывался на хвост пика НА. После снижения концентрации метанола до 1% пики Рб и НА не перекрывались, однако асимметрия пика НА увеличилась. С целью ее снижения в подвижную фазу, содержащую 1% метанола, вводили ацетонитрил.

В результате экспериментов была подобрана подвижная фаза - водно-органическая фаза, состоящая из фосфатного буфера рН 7,0, содержащего 1% метанола и 0,5% ацетонитрила, которая обеспечила эффективное разделение всех 5 компонентов (рис.3). Общее время хроматографирования в этой системе составило 35 мин, а времена удерживания компонентов приблизительно (в мин): у ЯК - 5,3, Пц - 15, ПГ - 19,3, НА - 26, Рб - 31.

Количественное определение проведено методом внешнего стандарта с использованием растворов стандартных образцов индивидуальных компонентов.

Метрологические характеристики предлагаемой методики количественного определения изучены на модельных смесях в 5 повторностях и представлены в таблице.


Как следует из таблицы, с помощью разработанной методики в препарате "Аданол" можно определять все 5 компонентов с относительной ошибкой не более 3% с доверительной вероятностью 95%.

Помимо пиков основных компонентов препарата, на хроматограмме, полученной в вышеописанных условиях, идентифицированы пики гипоксантина и никотиновой кислоты, присутствующих в исходных субстанциях, а также образующихся в процессе гидролиза из Рб и НА соответственно. Таким образом, разработанная методика позволяет качественно и количественно определить эти посторонние примеси в препарате.

Выводы

1. Определены оптимальные условия количественного анализа янтарной кислоты с применением метода ВЭЖХ в многокомпонентной смеси.

2. Разработана методика качественного и количественного анализа компонентов препарата "Аданол", включая примеси, с относительной ошибкой определения не более 3%.

Список использованной литературы

1. М.А. Казьмин, А.В. Михалев, А.П. Арзамасцев "Определение компонентов препарата "БИЦИЛЛИН-3" методом ВЭЖХ" // Фармация - №5 - 2002 - с.5-6.

2. Т.Х. Вергейчик, Н.С. Онегова "ВЭЖХ в анализе препаратов, содержащих пропифеназон" // Фармация - №6 - 2002 - с.13-16.

3. А.Ю. Петров, С.А. Дмитриченко, А.Л. Коваленко, Л.Е. Алексеева "Стандартизация препарата "Аданол" // Фармация - №5 - 2002 - с.11-13.

Дополнительная

1. Барам Г.И., Федорова Г.А. // Применение хроматографии в пищевой, микробиологической и медицинской промышленности: Мат. Всес. Конф. - Геленджик, 1990 г. - С.43-44.

2. Кричковская Л.В., Черненькая Л.А. // Применение хроматографии в пищевой, микробиологической и медицинской промышленности: Мат. Всес. Конф. - Геленджик, 8-12 октября 1990 г., М., 1990. - С.49.

3. Хроматография: Практическое приложение метода: В 2-х частях. Ч.2 - М.: Мир, 1986. - 422 с.

9885 0

ВЭЖХ - это жидкостная колоночная хроматография, механизмы сорбции в которой могут использоваться самые различные. По существу, ВЭЖХ -это современная форма реализации классической жидкостной колоночной хроматографии. Ниже перечислены некоторые наиболее существенные качественные характеристики ВЭЖК:
- высокая скорость процесса, позволившая сократить продолжительность разделения от нескольких часов и суток до минут;
- минимальная степень размывания хроматографических зон, что дает возможность разделять соединения, лишь незначительно различающиеся по константам сорбции;
- высокая степень механизации и автоматизации разделения и обработки информации, благодаря чему колоночная жидкостная хроматография достигла нового уровня воспроизводимости и точности.

Интенсивные исследования последних десятилетий, громадный объем накопленных экспериментальных данных позволяют сегодня уже говорить о классификации вариантов в рамках метода высокоэффективной жидкостной хроматографии. Конечно, при этом остается в силе классификация по механизму сорбции, приведенная выше.

Распространена классификация, основанная на сравнительной полярности подвижной и неподвижной фаз. При этом различают нормально- и обращенно-фазовую хроматографию.

Нормально-фазовая хроматография (НФХ) - такой вариант ВЭЖХ, когда подвижная фаза менее полярна, чем неподвижная, и есть основания считать, что основной фактор, определяющий удерживание, - это взаимодействие сорбатов непосредственно с поверхностью либо объемом сорбента.

Обращенно-фазовая хроматография (ОФХ) - такой вариант ВЭЖХ, когда подвижная фаза более полярна, чем неподвижная, и удерживание определяется непосредственным контактом молекул сорбата с поверхностью или объемом сорбента; при этом ионизированные сорбаты не обмениваются на ионы подвижной фазы, сорбированные на поверхности.

Ионообменная хроматография - вариант, при котором сорбция осуществляется путем обмена сорбированных ионов подвижной фазы на ионы хроматографируемых веществ; полностью аналогично можно определить лигандообменную хроматографию.

Хроматография на динамически модифицированных сорбентах - вариант ВЭЖХ, при котором сорбат не взаимодействует непосредственно с поверхностью сорбента, а вступает в ассоциацию с молекулами приповерхностных слоев элюента.
Ион-парная хроматография - такой вариант обращенно-фазовой хроматографии ионизированных соединений, при котором в подвижную фазу добавляется гидрофобный противоион, качественно изменяющий сорбционные характеристики системы.

Эксклюзионная хроматография - способ разделения соединений по их молекулярным массам, основанный на различии в скорости диффузии в порах неподвижной фазы молекул различных размеров.

Для ВЭЖК очень важной характеристикой является величина сорбентов, обычно 3-5 мкм, сейчас до 1 ,8 мкм. Это позволяет разделять сложные смеси веществ быстро и полно (среднее время анализа от 3 до 30 мин).

Задача разделения решается при помощи хроматографической колонки, которая представляет собой трубку, заполненную сорбентом. При проведении анализа через хроматографическую колонку подают жидкость (элюент) определенного состава с постоянной скоростью. В этот поток вводят точно отмеренную дозу пробы. Компоненты пробы, введенной в хроматографическую колонку, из-за их разного сродства к сорбенту колонки двигаются по ней с различными скоростями и достигают детектора последовательно в разные моменты времени.

Таким образом, хроматографическая колонка отвечает за селективность и эффективность разделения компонентов. Подбирая различные типы колонок, можно управлять степенью разделения анализируемых веществ. Идентификация соединений осуществляется по их времени удерживания. Количественное определение каждого из компонентов рассчитывают, исходя из величины аналитического сигнала, измеренного с помощью детектора, подключенного к выходу хроматографической колонки.

Сорбенты. Становление ВЭЖХ в значительной мере связано с созданием новых поколений сорбентов с хорошими кинетическими свойствами и разнообразными термодинамическими свойствами. Основной материал для сорбентов в ВЭЖХ- силикагель. Он механически прочен, обладает значительной пористостью, что дает большую обменную емкость при небольших размерах колонки. Наиболее ходовой размер частиц 5-10 мкм. Чем ближе к шарообразной форма частиц, тем меньше сопротивление потоку, выше эффективность, особенно, если отсеяна очень узкая фракция (например, 7 +1 мкм).

Удельная поверхность силикагеля 10-600 м /г. Силикагель может быть модифицирован различными химическими группами, привитыми к поверхности (С-18, CN, NH2, SO3H), что позволяет использовать сорбенты на его основе для разделения самых различных классов соединений. Основной недостаток силикагеля - малая химическая стойкость при рН < 2 и рН > 9 (кремнезем растворяется в щелочах и кислотах). Поэтому в настоящее время идет интенсивный поиск сорбентов на базе полимеров, стойких при рН от 1 до 14, например, на основе полиметилметакрилата, полистирола и т.д.

Сорбенты для ионообменной хроматографии. В силу особенностей разделения (в кислой или щелочной среде) основной материал сорбенто-в полистирол с дивинилбензолом различной степени сшивки с привитыми к их поверхности группами SO3 -H+ (сильнокислые катионообменники) или -СОО-Naf (слабокислые катионообменники), -H2N+(CH3)3Cl- (сильноосновные анионообменники) или -N+HR2Cl- (слабоосновные анионообменники).

Сорбенты для гель-проникающей хроматографии. Основной тип - стирол-ДВБ. Используются также макропористые стекла, метилметакрилат, силикагель. Для ионо-эксклюзионной хроматографии используются те же сорбенты.
Насосы. Для обеспечения расхода подвижной фазы (ПФ) через колонку с указанными параметрами используются насосы высокого давления. К наиболее важным техническим характеристикам насосов для ЖХ относятся: диапазон расхода; максимальное рабочее давление; воспроизводимость расхода; диапазон пульсаций подачи растворителя.

По характеру подачи растворителя насосы могут быть постоянной подачи (расхода) и постоянного давления. В основном при аналитической работе используется режим постоянного расхода, при заполнении колонок - постоянного давления. По принципу действия насосы делятся на шприцевые и на плунжерные возвратно поступательные.

Шприцевые насосы. Для насосов этого типа характерно практически полное отсутствие пульсаций потока подвижной фазы в ходе работы. Недостатки насоса: а) большой расход времени и растворителя на промывку при смене растворителя; б) приостановка разделения во время заполнения насоса; в) большие габариты и вес при обеспечении большого расхода и давления (нужен мощный двигатель и большое усилие поршня с его большой площадью).

Плунжерные возвратно-поступательные насосы. Насосы этого типа обеспечивают постоянную объемную подачу подвижной фазы длительное время. Максимальное рабочее давление 300-500 атм, расход 0,01-10 мл/мин. Воспроизводимость объемной подачи - 0,5 %. Основной недостаток- растворитель подается в систему в виде серии последовательных импульсов, поэтому существуют пульсации давления и потока.

Это является основной причиной повышенного шума и снижения чувствительности почти всех детекторов, применяемых в ЖХ, особенно электрохимического. Способы борьбы с пульсациями: с использованием сдвоенных насосов или двухплунжерного насоса Баг-лая, применением демпфирующих устройств и электронных устройств.

Величина объемной подачи определяется тремя параметрами: диаметром плунжера (обычно 3,13; 5,0; 7,0 мм), его амплитудой (12-18 мм) и частотой (что зависит от скорости вращения двигателя и редуктора).

Дозаторы. Назначение дозатора заключается в переносе пробы, находящейся при атмосферном давлении, на вход колонки, находящейся при давлении вплоть до нескольких атмосфер. Важно, чтобы в дозаторе отсутствовали непромываемые подвижной фазой «мертвые» объемы и размывание пробы в ходе дозирования. На первых порах дозаторы в ЖХ были аналогичны газовым с проколом мембраны. Однако более 50-100 атм мембраны не держат, химическая стойкость их недостаточна, их кусочки загрязняют фильтры колонок и капилляры.

В жидкой фазе гораздо меньше скорости диффузии, чем в газовой. Поэтому можно дозировать с остановкой потока - проба не успевает размыться в дозаторе. На время ввода в дозатор пробы специальный кран перекрывает поток растворителя. Давление на входе в колонку быстро снижается, через несколько секунд пробу можно вводить в камеру дозатора обычным микрошприцем. Далее дозатор запирается, включается поток растворителя, идет разделение.

Давление, которое держит этот кран, до 500-800 атм. Но при остановке потока нарушается равновесие в колонке, что может приводить к появлению «вакантных» дополнительных пиков.

Наибольшее распространение получили петлевые дозаторы. При заполнении дозатора под высоким давлением оказываются входы 1,2 и канал между ними. Входы 3-6, каналы между ними и дозирующая петля оказываются под атмосферным давлением, что позволяет заполнить петлю с помощью шприца или насоса. При повороте дозатора поток подвижной фазы вытесняет пробу в колонку. Для снижения погрешности петля промывается 5-10-кратным объемом пробы. Если пробы мало, то ее можно ввести в петлю микрошприцем. Объем петли обычно 5-50 мкл.

Н.А. Воинов, Т.Г. Волова

В высокоэффективной жидкостной хроматографии (ВЭЖХ) характер происходящих процессов в хроматографической колонке, в общем идентичен с процессами в газовой хроматографии. Отличие состоит лишь в применении в качестве неподвижной фазы жидкости. В связи с высокой плотностью жидких подвижных фаз и большим сопротивлением колонок газовая и жидкостная хроматография сильно различаются по аппаратурному оформлению.

В ВЭЖХ в качестве подвижных фаз обычно используют чистые растворители или их смеси.

Для создания потока чистого растворителя (или смесей растворителей), называемого в жидкостной хроматографии элюентом, используются насосы, входящие в гидравлическую систему хроматографа.

Адсорбционная хроматография осуществляется в результате взаимодействия вещества с адсорбентами, такими как силикагель или оксид алюминия, имеющими на поверхности активные центры. Различие в способности к взаимодействию с адсорбционными центрами разных молекул пробы приводит к их разделению на зоны в процессе движения с подвижной фазой по колонке. Достигаемое при этом разделение зон компонентов зависит от взаимодействия, как с растворителем, так и с адсорбентом.

Наибольшее применение в ВЭЖХ находят адсорбенты из силикагеля с разным объемом, поверхностью и диаметром пор. Значительно реже используют оксид алюминия и другие адсорбенты. Основная причина этого:

недостаточная механическая прочность, не позволяющая упаковывать и использовать при повышенных давлениях, характерных для ВЭЖХ;

силикагель по сравнению с оксидом алюминия обладает более широким диапазоном пористости, поверхности и диаметра пор; значительно большая каталитическая активность оксида алюминия приводит к искажению результатов анализа вследствие разложения компонентов пробы либо их необратимой хемосорбции.

Детекторы для ВЭЖХ

Высокоэффективная жидкостная хроматография (ВЭЖХ) используется для детектирования полярных нелетучих веществ, которые по каким-либо причинам не могут быть переведены в форму удобную для газовой хроматографии, даже в виде производных. К таким веществам, в частности, относят сульфоновые кислоты, водорастворимые красители и некоторые пестициды, например производные фенил - мочевины.

Детекторы:

УФ - детектор на диодной матрице. «Матрица» фотодиодов (их более двухсот) постоянно регистрирует сигналы в УФ- и видимой области спектра, обеспечивая таким образом запись УФ-В-спектров в режиме сканирования. Это позволяет непрерывно снимать при высокой чувствительности неискаженные спектры быстро проходящих через специальную ячейку компонентов.

По сравнению с детектированием на одной длине волны, которое не дает информации о «чистоте» пика, возможности сравнения полных спектров диодной матрицы обеспечивают получение результата идентификации с гораздо большей степенью достоверности.

Флуоресцентный детектор. Большая популярность флуоресцентных детекторов объясняется очень высокой селективностью и чувствительностью, и тем фактором, что многие загрязнители окружающей среды флуоресцируют (например, полиароматические углеводороды).

Электрохимический детектор используются для детектирования веществ, которые легко окисляются или восстанавливаются: фенолы, меркаптаны, амины, ароматические нитро- и галогенпроизводные, альдегиды кетоны, бензидины.

Хроматографическое разделение смеси на колонке вследствие медлен-ного продвижения ПФ занимает много времени. Для ускорения процесса хроматографирование проводят под давлением. Этот метод называют вы-сокоэффективной жидкостной хроматографией (ВЖХ)

Модернизация аппаратуры, применяемой в классической жидкостной колоночной хроматографии, сделала ее одним из перспективных и совре-менных методов анализа. Высокоэффективная жидкостная хроматография является удобным способом разделения, препаративного выделения и про-ведения качественного и количественного анализа нелетучих термола-бильных соединений как с малой, так с большой молекулярной массой.

В зависимости от типа применяемого сорбента в данном методе используют 2 варианта хроматографирования: на полярном сорбенте с использованием неполярного элюента (вариант прямой фазы) и на неполярном сорбенте с использованием полярного элюента - так называемая обращенно-фазовая высокоэффективная жидкостная хроматография (ОфВЖХ).

При переходе элюента к элюенту равновесие в условиях ОфВЖХ устанавливается во много раз быстрее, чем в условиях полярных сорбентов и неводных ПФ. Вследствие этого, а также удобства работы с водными и водно-спиртовыми элюентами, ОфВЖХ получила в настоящее время большую популярность. Большинство анализов при помощи ВЖХ проводят именно этим методом.

Детекторы. Регистрация выхода из колонки отдельного компонента производится с помощью детектора. Для регистрации можно использовать изменение любого аналитического сигнала, идущего от подвижной фазы и связанного с природой и количеством компонента смеси. В жидкостной хроматографии используют такие аналитические сигналы, как светопоглощение или светоиспускание выходящего раствора (фотометрические и флуориметрические детекторы), показатель преломления (рефрактометрические детекторы), потенциал и электрическая проводимость (электрохимические детекторы) и др.

Непрерывно детектируемый сигнал регистрируется самописцем. Хроматограмма представляет собой зафиксированную на ленте самописца по-следовательность сигналов детектора, вырабатываемых при выходе из ко-лонки отдельных компонентов смеси. В случае разделения смеси на внеш-ней хроматограмме видны отдельные пики. Положение пика на хроматограмме используют для целей идентификации вещества, высоту или площадь пика - для целей количественного определения.

«Высокоэффективная жидкостная хроматография загрязнителей природных и сточных вод»

Введение

Глава 1. Основные понятия и классификация методов жидкостной хроматографии

1.1 Аппаратура для жидкостной хроматографии

Глава 2. Сущность ВЭЖХ

2.1 Применение

Глава 3. Примеры использования ВЭЖХ в анализе объектов окружающей среды

Глава 4. Аппаратура для ВЭЖХ

Литература

Приложение


Введение

Хроматографические методы часто оказываются незаменимыми для идентификации и количественного определения органических веществ со сходной структурой. При этом наиболее широко используемыми для рутинных анализов загрязнителей окружающей среды являются газовая и высокоэффективная жидкостная хроматография. Газохроматографический анализ органических загрязнителей в питьевой и сточных водах сначала основывался на использовании насадочных колонок, позднее распространение получили и кварцевые капиллярные колонки. Внутренний диаметр капиллярных колонок составляет обычно 0,20-0,75 мм, длина - 30-105 м. Оптимальные результаты при анализе загрязнителей в воде достигаются чаще всего при использовании капиллярных колонок с различной толщиной пленки из метилфенилсиликонов с содержанием фенильных групп 5 и 50%. Уязвимым местом хроматографических методик с использованием капиллярных колонок часто становится система ввода пробы. Системы ввода пробы можно подразделить на две группы: универсальные и селективные. К универсальным относятся системы ввода с делением и без деления потока, “холодный” ввод в колонку и испарение при программировании температуры. При селективном вводе используют продувку с промежуточным улавливанием в ловушке, парофазный анализ и т.д. При использовании универсальных систем ввода в колонку поступает вся проба полностью, при селективной инжекции вводится только определенная фракция. Результаты, получаемые при селективном вводе, являются существенно более точными, поскольку попавшая в колонку фракция содержит только летучие вещества, и техника при этом может быть полностью автоматизирована.

Газохроматографические детекторы, используемые в мониторинге загрязнителей, часто подразделяют на универсальные, откликающиеся на каждый компонент в подвижной фазе, и селективные, реагирующие на присутствие в подвижной фазе определенной группы веществ со сходными химическими характеристиками. К универсальным относятся пламенно-ионизационный, атомно-эмиссионный, масс-спектрометрический детекторы и инфракрасная спектрометрия. Селективными детекторами, используемыми в анализе воды, являются электронно-захватный (селективен к веществам, содержащим атомы галогенов), термоионный (селективен к азот- и фосфорсодержащим соединениям), фотоионизационный (селективен к ароматическим углеводородам), детектор по электролитической проводимости (селективен к соединениям, содержащим атомы галогенов, серы и азота). Минимально детектируемые количества веществ - от нанограммов до пикограммов в секунду.

Высокоэффективная жидкостная хроматография (ВЭЖХ) является идеальным методом для определения большого числа термически неустойчивых соединений, которые не могут быть проанализированы с помощью газовой хроматографии. Объектами анализа методом жидкостной хроматографии в настоящее время часто становятся современные агрохимикаты, в число которых входят метилкарбонаты и фосфорорганические инсектициды, другие нелетучие вещества. Высокоэффективная жидкостная хроматография получает все большее распространение среди других методов, применяемых в мониторинге окружающей среды, еще и потому, что имеет блестящие перспективы в плане автоматизации пробоподготовки.


ГЛАВА 1. ОСНОВНЫЕ ПОНЯТИЯ И КЛАССИФИКАЦИЯ МЕТОДОВ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ

Жидкостную хроматографию подразделяют на несколько классов в зависимости от типа носителя неподвижной фазы. Простое аппаратурное оформление бумажной и тонкослойной хроматографий обусловили широкое использование этих методов в аналитической практике. Однако, большие возможности колоночной жидкостной хроматографии стимулировали совершенствование оборудования для этого классического метода и привели к быстрому внедрению ВЭЖХ. Пропускание элюента через колонку под высоким давлением позволило резко увеличить скорость анализа и существенно повысить эффективность разделения за счет использования мелкодисперсного сорбента. Метод ВЭЖХ в настоящее время позволяет выделять, количественно и качественно анализировать сложные смеси органических соединений.

По механизму взаимодействия разделяемого вещества (элюата) с неподвижной фазой различают адсорбционную, распределительную, ионообменную, эксклюзионную, ион-парную, лигандообменную и аффинную хроматографии.

Адсорбционная хроматография . Разделение методом адсорбционной хроматографии осуществляется в результате взаимодействия разделяемого вещества с адсорбентом, таким как оксид алюминия или силикагель, имеющими на поверхности активные полярные центры. Растворитель (элюент) - неполярная жидкость. Механизм сорбции состоит в специфическом взаимодействии между полярной поверхностью сорбента и полярными (либо способными поляризоваться) участками молекул анализируемого компонента (рис. 1).


Рис. 1. Адсорбционная жидкостная хроматография.

Распределительная хроматография . При распределительном варианте жидкостной хроматографии разделение смеси веществ осуществляется за счет различия их коэффициентов распределения между двумя несмешивающимися фазами - элюентом (подвижной фазой) и фазой, находящейся на сорбенте (неподвижная фаза).

При нормально-фазовом варианте распределительной жидкостной хроматографии используются неполярный элюент и полярные группы, привитые к поверхности сорбента (чаще всего силикагеля). В качестве модификаторов поверхности силикагеля (привитых фаз) используются замещенные алкилхлорсиланы, содержащие полярные группы, такие как нитрильная, аминогруппа и т. д. (рис. 2). Применение привитых фаз позволяет тонко управлять сорбционными свойствами поверхности неподвижной фазы и добиваться высокой эффективности разделения.

Рис. 2. Распределительная хроматография с привитой фазой (нормально-фазный вариант).

Обращенно-фазовая жидкостная хроматография основана на распределении компонентов смеси между полярным элюентом и неполярными группами (длинными алкильными цепочками), привитыми к поверхности сорбента (рис. 3).

Рис. 3. Распределительная хроматография с привитой фазой (обращенно-фазный вариант).

Менее широко используется вариант жидкостной хроматографии с нанесенными фазами, когда жидкая неподвижная фаза наносится на неподвижный носитель.

Эксклюзивная (гельпроникающая) хроматография представляет собой вариант жидкостной хроматографии, в котором разделение веществ происходит за счет распределения молекул между растворителем, находящимся в порах сорбента и растворителем, протекающим между его частицами.

Аффинная хроматография основана на специфических взаимодействиях разделяемых белков (антител) с привитыми на поверхности сорбента (синтетической смолы) веществами (антигенов), избирательно образующими с белками комплексы (коньюгаты).

Ионообменная, ион-парная, лигандообменная хроматографии применяются в основном в неорганическом анализе.

Основные параметры хроматографического разделения.

Основными параметрами хроматографического разделения являются удерживаемый объем и время удерживания компонента смеси (рис. 4).

Время удерживанияtR - это время, прошедшее от момента ввода пробы в колонку до выхода максимума соответствующего пика. Умножив время удерживания на объемную скорость элюента F ,получим удерживаемый объем VR:

Исправленое время удерживания - время, прошедшее с момента появления максимума пика несорбируемого компонента до пика соответствующего соединения:

tR" = tR - t0 ;

Приведенный или исправленный объем удерживания - это объем удерживания с поправкой на мертвый объем колонки V0, т. е. на объем удерживания несорбируемого компонента:

VR" = VR - V0;

Характеристикой удерживания является также коэффициент емкости k", определяемый как отношение массы вещества в неподвижной фазе к массе вещества в подвижной фазе: k" = mн / mп;

Величину k" легко определить по хроматограмме:


Важнейшими параметрами хроматографического разделения являются его эффективность и селективность.

Эффективность колонки, измеряемая высотой теоретических тарелок (ВЭТТ) и обратно пропорциональная их числу (N) тем выше, чем уже пик вещества, выходящего при том же времени удерживания. Значение эффективности может быть вычислено по хроматограмме по следующей формуле:

N = 5.54 . (tR / 1/2) 2 ,

где tR - время удерживания,

w 1/2 - ширина пика на половине высоты

Зная число теоретических тарелок, приходящееся на колонку, длину колонки L и средний диаметр зерна сорбента dc, легко получить значения высоты, эквивалентной теоретической тарелке (ВЭТТ), и приведенной высоты (ПВЭТТ):

ВЭТТ = L/N ПВЭТТ = ВЭТТ/d c

Эти характеристики позволяют сравнивать эффективности колонок различных типов, оценивать качество сорбента и качество заполнения колонок.

Селективность разделения двух веществ определяется по уравнению:

При рассмотрении разделения смеси двух компонентов важным параметром служит также степень разделенияRS:

;

Пики считаются разрешенными, если величина RS больше или равна 1.5.

Основные хроматографические параметры связывает следующее уравнение для разрешения:

;

Факторами, определяющими селективность разделения, являются:

1) химическая природа сорбента;

2) состав растворителя и его модификаторов;

3) химическая структура и свойства компонентов разделяемой смеси;

4) температура колонки

1.1 Аппаратура для жидкостной хроматографии

В современной жидкостной хроматографии используют приборы различной степени сложности - от наиболее простых систем, до хроматографов высокого класса, снабженных различными дополнительными устройствами.

На рис. 4. представлена блок-схема жидкостного хроматографа, содержащая минимально необходимый набор составных частей, в том или ином виде, присутствующих в любой хроматографической системе.

Рис. 4. Блок-схема жидкостного хроматографа.

Насос (2) предназначен для создания постоянного потока растворителя. Его конструкция определяется, прежде всего, рабочим давлением в системе. Для работы в диапазоне 10-500 МПа используются насосы плунжерного (шприцевого), либо пистонного типов. Недостатком первых является необходимость периодических остановок для заполнения элюентом, а вторых - большая сложность конструкции и, как следствие, высокая цена. Для простых систем с невысокими рабочими давлениями 1-5 МПа с успехом применяют недорогие перистальтические насосы, но так как при этом трудно добиться постоянства давления и скорости потока, их использование ограничено препаративными задачами.

Инжектор (3) обеспечивает ввод пробы смеси разделяемых компонентов в колонку с достаточно высокой воспроизводимостью. Простые системы ввода пробы - "stop-flow" требуют остановки насоса и, поэтому, менее удобны, чем петлевые дозаторы, разработанные фирмой Reodyne.

Колонки (4) для ВЭЖХ представляют собой толстостенные трубки из нержавеющей стали, способные выдержать высокое давление. Большую роль играет плотность и равномерность набивки колонки сорбентом. Для жидкостной хроматографии низкого давления с успехом используют толстостенные стеклянные колонки. Постоянство температуры обеспечивается термостатом (5).

Детекторы (6) для жидкостной хроматографии имеют проточную кювету, в которой происходит непрерывное измерение какого-либо свойства протекающего элюента. Наиболее популярными типами детекторов общего назначения являются рефрактометры, измеряющие показатель преломления, и спектрофотометрические детекторы, определяющие оптическую плотность растворителя на фиксированной длине волны (как правило, в ультрафиолетовой области). К достоинствам рефрактометров (и недостаткам спектрофотометров) следует отнести низкую чувствительность к типу определяемого соединения, которое может и не содержать хромофорных групп. С другой стороны, применение рефрактометров ограничено изократическими системами (с постоянным составом элюента), так что использование градиента растворителей в этом случае невозможно.

Колонки для ВЭЖХ, которые чаще всего используют в анализах загрязнителей окружающей среды, имеют длину 25 см и внутренний диаметр 4,6 мм, заполняются они сферическими частицами силикагеля размером 5-10 мкм с привитыми октадецильными группами. В последние годы появились колонки с меньшим внутренним диаметром, заполненными частицами меньшего размера. Использование таких колонок приводит к уменьшению расхода растворителей и продолжительности анализа, увеличению чувствительности и эффективности разделения, а также облегчает проблему подключения колонок к спектральным детекторам. Колонки с внутренним диаметром 3,1 мм снабжают предохранительным картриджем (форколонкой) для увеличения срока службы и улучшения воспроизводимости анализов.

В качестве детекторов в современных приборах для ВЭЖХ используются обычно УФ-детектор на диодной матрице, флуоресцентный и электрохимический.

Следует иметь в виду, что в практической работе разделение часто протекает не по одному, а по нескольким механизмам одновременно. Так, эксклюзионное разделение бывает осложнено адсорбционными эффектами, адсорбционное - распределительными, и наоборот. При этом чем больше различие веществ в пробе по степени ионизации, основности или кислотности, по молекулярной массе, поляризуемости и другим параметрам, тем больше вероятность проявления другого механизма разделения для таких веществ.

На практике, наибольшее распространение получила «обращённофазовая» (распределительная) хроматография, в которой неподвижная фаза не полярна, а подвижная полярна (т. е. обратна «прямофазной» хроматографии).

В большинстве лабораторий мира группу из 16 приоритетных ПАУ анализируют методами ВЭЖХ или ХМС.


ГЛАВА 2. СУЩНОСТЬ ВЭЖХ

В высокоэффективной жидкостной хроматографии (ВЭЖХ) характер происходящих процессов в хроматографической колонке, в общем идентичен с процессами в газовой хроматографии. Отличие состоит лишь в применении в качестве неподвижной фазы жидкости. В связи с высокой плотностью жидких подвижных фаз и большим сопротивлением колонок газовая и жидкостная хроматография сильно различаются по аппаратурному оформлению.

В ВЭЖХ в качестве подвижных фаз обычно используют чистые растворители или их смеси.

Для создания потока чистого растворителя (или смесей растворителей), называемого в жидкостной хроматографии элюентом, используются насосы, входящие в гидравлическую систему хроматографа.

Адсорбционная хроматография осуществляется в результате взаимодействия вещества с адсорбентами, такими как силикагель или оксид алюминия, имеющими на поверхности активные центры. Различие в способности к взаимодействию с адсорбционными центрами разных молекул пробы приводит к их разделению на зоны в процессе движения с подвижной фазой по колонке. Достигаемое при этом разделение зон компонентов зависит от взаимодействия, как с растворителем, так и с адсорбентом.

Наибольшее применение в ВЭЖХ находят адсорбенты из силикагеля с разным объемом, поверхностью и диаметром пор. Значительно реже используют оксид алюминия и другие адсорбенты. Основная причина этого:

Недостаточная механическая прочность, не позволяющая упаковывать и использовать при повышенных давлениях, характерных для ВЭЖХ;

силикагель по сравнению с оксидом алюминия обладает более широким диапазоном пористости, поверхности и диаметра пор; значительно большая каталитическая активность оксида алюминия приводит к искажению результатов анализа вследствие разложения компонентов пробы либо их необратимой хемосорбции.

Детекторы для ВЭЖХ

Высокоэффективная жидкостная хроматография (ВЭЖХ) используется для детектирования полярных нелетучих веществ, которые по каким-либо причинам не могут быть переведены в форму удобную для газовой хроматографии, даже в виде производных. К таким веществам, в частности, относят сульфоновые кислоты, водорастворимые красители и некоторые пестициды, например производные фенил - мочевины.

Детекторы:

УФ - детектор на диодной матрице. «Матрица» фотодиодов (их более двухсот) постоянно регистрирует сигналы в УФ- и видимой области спектра, обеспечивая таким образом запись УФ-В-спектров в режиме сканирования. Это позволяет непрерывно снимать при высокой чувствительности неискаженные спектры быстро проходящих через специальную ячейку компонентов.

По сравнению с детектированием на одной длине волны, которое не дает информации о «чистоте» пика, возможности сравнения полных спектров диодной матрицы обеспечивают получение результата идентификации с гораздо большей степенью достоверности.

Флуоресцентный детектор. Большая популярность флуоресцентных детекторов объясняется очень высокой селективностью и чувствительностью, и тем фактором, что многие загрязнители окружающей среды флуоресцируют (например, полиароматические углеводороды).

Электрохимический детектор используются для детектирования веществ, которые легко окисляются или восстанавливаются: фенолы, меркаптаны, амины, ароматические нитро- и галогенпроизводные, альдегиды кетоны, бензидины.

Хроматографическое разделение смеси на колонке вследствие медлен-ного продвижения ПФ занимает много времени. Для ускорения процесса хроматографирование проводят под давлением. Этот метод называют вы-сокоэффективной жидкостной хроматографией (ВЖХ)

Модернизация аппаратуры, применяемой в классической жидкостной колоночной хроматографии, сделала ее одним из перспективных и совре-менных методов анализа. Высокоэффективная жидкостная хроматография является удобным способом разделения, препаративного выделения и про-ведения качественного и количественного анализа нелетучих термола-бильных соединений как с малой, так с большой молекулярной массой.

В зависимости от типа применяемого сорбента в данном методе используют 2 варианта хроматографирования: на полярном сорбенте с использованием неполярного элюента (вариант прямой фазы) и на неполярном сорбенте с использованием полярного элюента - так называемая обращенно-фазовая высокоэффективная жидкостная хроматография (ОфВЖХ).

При переходе элюента к элюенту равновесие в условиях ОфВЖХ устанавливается во много раз быстрее, чем в условиях полярных сорбентов и неводных ПФ. Вследствие этого, а также удобства работы с водными и водно-спиртовыми элюентами, ОфВЖХ получила в настоящее время большую популярность. Большинство анализов при помощи ВЖХ проводят именно этим методом.

Детекторы. Регистрация выхода из колонки отдельного компонента производится с помощью детектора. Для регистрации можно использовать изменение любого аналитического сигнала, идущего от подвижной фазы и связанного с природой и количеством компонента смеси. В жидкостной хроматографии используют такие аналитические сигналы, как светопоглощение или светоиспускание выходящего раствора (фотометрические и флуориметрические детекторы), показатель преломления (рефрактометрические детекторы), потенциал и электрическая проводимость (электрохимические детекторы) и др.

Непрерывно детектируемый сигнал регистрируется самописцем. Хроматограмма представляет собой зафиксированную на ленте самописца по-следовательность сигналов детектора, вырабатываемых при выходе из ко-лонки отдельных компонентов смеси. В случае разделения смеси на внеш-ней хроматограмме видны отдельные пики. Положение пика на хроматограмме используют для целей идентификации вещества, высоту или площадь пика - для целей количественного определения.

2.1 Применение

Наиболее широкое применение ВЭЖХ находит в следующих областях химического анализа (выделены объекты анализа, где ВЭЖХ практически не имеет конкуренции):

· Контроль качества продуктов питания - тонизирующие и вкусовые добавки, альдегиды, кетоны, витамины, сахара, красители, консерванты, гормональные препараты, антибиотики, триазиновые, карбаматные и др. пестициды, микотоксины, нитрозоамины, полициклические ароматические углеводороды и т.п.

· Охрана окружающей среды - фенолы, органические нитросоединения, моно- и полициклические ароматические углеводороды, ряд пестицидов, главные анионы и катионы.

· Криминалистика - наркотики, органические взрывчатые вещества и красители, сильнодействующие фармацевтические препараты.

· Фармацевтическая промышленность - стероидные гормоны, практически все продукты органического синтеза, антибиотики, полимерные препараты, витамины, белковые препараты.

· Медицина - перечисленные биохимические и лекарственные вещества и их метаболиты в биологических жидкостях (аминокислоты, пурины и пиримидины, стероидные гормоны, липиды) при диагностике заболеваний, определении скорости выведения лекарственных препаратов из организма с целью их индивидуальной дозировки.

· Сельское хозяйство - определение нитрата и фосфата в почвах для определения необходимого количества вносимых удобрений, определение питательной ценности кормов (аминокислоты и витамины), анализ пестицидов в почве, воде и сельхозпродукции.

· Биохимия, биоорганическая химия, генная инженерия, биотехнология - сахара, липиды, стероиды, белки, аминокислоты, нуклеозиды и их производные, витамины, пептиды, олигонуклеотиды, порфирины и др.

· Органическая химия - все устойчивые продукты органического синтеза, красители, термолабильные соединения, нелетучие соединения; неорганическая химия (практически все растворимые соединения в виде ионов и комплексных соединений).

· контроль качества и безопасности продуктов питания, алкогольных и безалкогольных напитков, питьевой воды, средств бытовой химии, парфюмерии на всех стадиях их производства;

· определение характера загрязнений на месте техногенной катастрофы или чрезвычайного происшествия;

· обнаружение и анализ наркотических, сильнодействующих, ядовитых и взрывчатых веществ;

· определение наличия вредных веществ (полициклические и другие ароматические углеводороды, фенолы, пестициды, органические красители, ионы тяжелых, щелочных и щелочно-земельных металлов) в жидких стоках, воздушных выбросах и твердых отходах предприятий и в живых организмах;

· мониторинг процессов органического синтеза, нефте- и углепереработки, биохимических и микробиологических производств;

анализ качества почв для внесения удобрений, наличия пестицидов и гербицидов в почве, воде и в продукции, а также питательной ценности кормов; сложные исследовательские аналитические задачи; получение микроколичества сверхчистого вещества.


ГЛАВА 3. ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ВЭЖХ В АНАЛИЗЕ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ

ВЭЖХ - метод мониторинга ПАУ в объектах окружающей среды

Для полициклических ароматических углеводородов (ПАУ), экотоксикантов 1-го класса опасности, установлены крайне низкие уровни предельно допустимых концентраций (ПДК) в природных объектах. Определение ПАУ на уровне ПДК и ниже относится к числу очень сложных аналитических задач и для их решения применяются высокотехнологичные методы анализа (ГХ-МС, ГХ, ВЭЖХ). При выборе метода для мониторинга к основным рассматриваемым характеристикам – чувствительность и селективность, добавляются экспрессность и экономичность, т.к. мониторинг предполагает проведение серийного анализа. Вариант ВЭЖХ на коротких колонках малого диаметра в значительной степени отвечает указанным требованиям. С применением данного метода авторами разработаны и аттестованы методики контроля бенз[a]пирена в трех природных средах: аэрозоле, снежном покрове и поверхностных водах. Для методик характерны: простая унифицированная подготовка пробы, включающая экстракцию ПАУ органическими растворителями и концентрирование экстракта, прямое введение сконцентрированного экстракта в хроматографическую колонку, применение многоволнового фотометрического детектирования в УФ области спектра, идентификация пиков ПАУ на хроматограммах с применением двух параметров, время удерживания и спектральное отношение. Суммарная погрешность не превышает 10 % при определении бенз[a]пирена в аэрозоле в диапазоне концентраций от 0.3 до 450 нг/м 3 , в поверхностных водах в диапазоне концентраций от 10 до 1000 нг/л, в снежном покрове в диапазоне поверхностной плотности от 0.5 до 50 мкг/м 2 . Для случая одновременного определения приоритетных ПАУ (до 12 соединений) и регистрации негомогенных пиков аналитов предложено повторное разделение экстракта с изменением селективности подвижной фазы, длины волны детектирования и температуры колонки с учетом индивидуальных свойств определяемого ПАУ.

1 . Качество окружающего воздуха. Массовая концентрация бенз[a]пирена. Методика выполнения измерений методом ВЭЖХ. Свидетельство об аттестации МВИ № 01-2000.

2 . Качество поверхностных и очищенных сточных вод. Массовая концентрация бенз[a]пирена. Методика выполнения измерений методом ВЭЖХ. Свидетельство об аттестации МВИ № 01-2001.

3 . Качество снежного покрова. Массовая концентрация бенз[a]пирена. Методика выполнения измерений методом ВЭЖХ. Свидетельство об аттестации МВИ № 02-2001.

Удаление анилина из водных растворов с использованием отходов алюмотермического восстановления прокатной медной окалины

Проблема удаления углеводородов из сточных вод является актуальной задачей. Во многих химических, нефтехимических и других производствах образуются анилин и его производные, которые являются токсичными веществами. Анилин - сильноядовитое вещество, ПДК - 0,1 мг/м 3 . Анилин и его производные растворимы в воде, поэтому не могут быть удалены гравитационным осаждением.

Одним из лучших методов очистки сточных вод от органических загрязнителей является применение неорганических и органических адсорбентов, способных регенерироваться (алюмосиликаты, модифицированные глины, древесина, волокна и т. д.) и неспособных к регенерации(активированный уголь, макропористые полимерные материалы и т. д.).

Регенерируемые адсорбенты могут удалить из воды органические вещества разной полярности. Поиск эффективных адсорбентов является актуальной задачей.

В настоящем сообщении представлены результаты исследования в области применения прокатной медной окалины Ереванского кабельного завода (ОПМОЕрКЗ) в качестве сорбентов анилина.

Хроматографические исследования проводили на хроматографе ВЭЖХ / высокоэффективная жидкостная хроматография / системы (Waters 486 - detector, Waters 600S - controller, Waters 626 - Pump), на колонке 250 х 4 мм наполненными исследуемыми нами сорбентами, скорость мобильной фазы 1 мл/м / мобильной фазой являются исследуемые нами растворители/, детектор - UV-254. УФ-спектроскопический анализ проведен на спектрофотометре «Specord-50», спектры получены с помощью компьютерной программы ASPECT PLUS.

Точно взвешенные порции сорбентов вносили в определенные объемы анилина в воде, начальные концентрации которых варьировали. Смесь тщательно взбалтывали в течение 6 ч. Далее пробу оставляли для отстоя. Адсорбция завершается практически в течение 48 ч. Количество осажденного анилина определено УФ-спектрофотометрическим, а также рефрактометрическим анализом.

Вначале были исследованы адсорбционные свойства ОПМОЕрКЗ при удалении анилина из раствора в тетрахлорметане. Оказалось, что анилин лучше всего поглощает сорбент 3 (таблица).

Проведены также измерения для водных растворов анилина в концентрациях 0,01- 0,0001 моль/л. В таблице приведены данные по 0,01 М раствору.

Поглощение анилина различными сорбентами из 0,01 М водного раствора анилина при 20°С

Ранее было установлено, что адсорбция в указанных пределах концентраций возрастает и линейно зависит от коэффициента преломления. Количество анилина было определено из графической зависимости «коэффициент преломления - молярная концентрация» и скорректировано данными как жидкостной хроматографии, так и УФ-спектрального анализа.

Наиболее активным для водных растворов является сорбент 3. Количество адсорбированного загрязнителя рассчитывалось как разница между общим количеством загрязнителя, добавленного в начальный раствор, и его остатком в конечном растворе.

Методы определения ПАУ в объектах окружающей среды

Как правило для определения ПАУ используются методы газовой хроматографии (ГХ) и высокоэффективной жидкостной хроматографии (ВЭЖХ). разделение основных 16 ПАУ, достаточное для количественного анализа, достигается применением либо капиллярных колонок в газовой хроматографии, либо высокоэффективных колонок применяемых в ВЭЖХ. Необходимо помнить, что колонка, хорошо разделяющая калибровочные смеси шестнадцати ПАУ не гарантирует, что они также хорошо будут разделяться на фоне сопутствующих органических соединений в исследуемых пробах.

В целях упрощения анализа, а также для достижения высокого качества получаемых результатов, большинство аналитических процедур содержит этап предварительного выделения (сепарации) ПАУ среди иных групп сопутствующих соединений в пробах. Чаще всего в этих целях используются методы жидкостной хроматографии низкого давления в системе жидкость-твердое тело или жидкость-жидкость с использованием механизмов адсорбции, например с использованием силикагеля или окиси алюминия, иногда используются смешанные механизмы, например адсорбции и исключения с применением cефадексов.

Использование предварительной очистки проб позволяет при определении ПАУ избежать влияния:

Полностью неполярных соединений, таких, как алифатические углеводороды;

Умеренно и сильно полярных соединений, например, фталанов, фенолов, многоатомных спиртов, кислот;

Высокомолекулярных соединений таких, как, например, смолы.

В высокоэффективной жидкостной хроматографии (ВЭЖХ) используются главным образом два типа детекторов: флуориметрический детектор или спектрофотометрический детектор с фотодиодной линейкой. Предел обнаружения ПАУ при флуориметрическом детектировании очень низкий, что делает этот метод особенно пригодным для определения следовых количеств полиароматических соединений. Однако классические флуориметрические детекторы практически не дают информации о строении исследуемого соединения. Современные конструкции делают возможным регистрацию спектров флуоресценции, которые характеристичны для индивидуальных соединений, но они пока не получили широкого распространения в практике рутинных измерений. Спектрофотометрический детектор с фотодиодной линейкой (ФДЛ) дает возможность регистрации спектров поглощения в УФ- и видимом спектральном диапазоне, эти спектры могут использоваться для идентификации. Аналогичная информация может быть получена с использованием быстросканирующих детекторов.

При выборе аналитической техники, предназначенной для разделения, идентификации и количественного анализа упомянутых ПАУ необходимо учитывать следующие условия:

Уровень определяемых содержаний в исследуемых пробах;

Количество сопутствующих субстанций;

Применяемая аналитическая процедура (методика выполнения измерений);

Возможности серийной аппаратуры.

Разработка методики определения щелочноземельных элементов и магния методом ионной высокоэффективной жидкостной хроматографии

Разработка и совершенствование методов, позволяющих решать задачи анализа вод- важная проблема аналитической химии. Развитие высокоэффективной жидкостной хроматографии высокого давления стимулировало развитие нового направления в ионообменной хроматографии- так называемой ионной хроматографии. Синтез сорбентов для ионной хроматографии затруднен, поскольку к ни предъявляется довольно много требований. В связи с отсутствием коммерчески доступных высокоэффективных катионитов, была использована динамически модифицированная обращеная фаза, для чего был синтезирован модификатор: N-гексадецил-N-деканоил-парамино- беноилсульфокислоты этил- диизопропиламмоний (ДГДАСК), где гидрофобный амин, содержащий группу SO 3 - , способный к катионному обмену. После пропускания раствора модификатора поглощение при l = 260 нм достигало 6,4 единиц оптической плотности (° Е) с выходом на плато. Рассчитанная ионообменная емкость составляет 15,65 мкмоль. Так как катионы щелочноземельных элементов и магния не поглощают в УФ- области спектра, использовалась непрямая УФ- детекция с применением синтезированного УФ- поглощающего элюента 1,4- дипиридинийбутана бромида (ДПБ бромид). Так как галоген- ионы разрушают стальные части колонки, то бромид-ион 1,4- дипиридинийбутана заменили на ацетат- ион. При промывании колонки элюентом происходит замена противоиона модификатора- этилдиизопропиламмония на УФ- поглощающий ион 1,4- дипиридинийбутан. Разделение катионов осуществляли при оптимальной длине волны l = 260 нм на шкале 0,4 А в режиме “складывания шкалы”; полярность самописца меняли на обратную. Разделение всех изучаемых катионов достигнуто при ведении комплексообразующей добавки- щавелевой кислоты. Пределы обнаружения Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ составляют 8 мкг/л; 16 мкг/л; 34 мкг/л; 72 мкг/л соответственно. В выбранных условиях проанализированы водопроводная вода, содержание Ca 2+ в которой составляет 10,6 +1,9 мг-ион/л, Mg 2+ -2,5 + мг-ион/л. Ошибка воспроизводимости не превышает для Ca 2+ -2,2%, для Mg 2+ – 1,4%.

Анализ комплексов кадмия в окружающей среде

Для изучения механизмов миграции тяжелых металлов в биосфере необходимы данные о химических формах существования металлов в природе. Сложности при анализе соединений одного из самых токсичных металлов - кадмия - связаны с тем, что он образует непрочные комплексы, и при попытке их выделить искажаются природные равновесия. В данной работе соединения кадмия в почве и растениях исследованы при помощи методики, основанной на хроматографическом разделении экстрактов с последующей идентификацией компонентов методами химического анализа. Такой подход позволил не только идентифицировать химические формы кадмия, но и прослеживать их трансформации в объектах окружающей среды.

С кадмием в объектах биосферы координируются ОН-группы углеводов и полифенолов (включая флавоноиды), С=О, фосфаты, NH 2 , NO 2 , SH-группы. Для целей настоящего исследования был составлен набор модельных лигандов, представляющих эти классы соединений. Взаимодействие модельных лигандов с водорастворимыми солями кадмия было исследовано методами УФ спектроскопии и ВЭЖХ.

Для выделения соединений кадмия использовали экстракцию специально подобранными (не образующими комплексов с Cd) растворителями. Так удается отделить кадмий от всех тяжелых металлов, кроме его близкого химического аналога – цинка. Кадмий- и цинк,содержащие пики на хроматограммах полученных экстрактов, выявляли при помощи связывания металлов в виде их дитизонатов. Для отделения от цинка использовали различие в устойчивости комплексов Cd и Zn при рН 6-8. Выделенные соединения Cd идентифицировали методом ВЭЖХ с изменением рН в процессе элюирования. Был выполнен анализ соединений кадмия с компонентами почв и тканей растений, а также идентифицированы вещества, вырабатываемые растениями в ответ на увеличение поступления кадмия из почвы. Показано, что у злаков защитными агентами являются флавоноиды, в частности трицин, у бобовых – алкоксипроизводные цистеина, у крестоцветных – как полифенолы, так и тиолы.


ГЛАВА 4. АППАРАТУРА ДЛЯ ВЭЖХ

CЕРИЯ ACCELA

Новый сверхвысокоэффективный жидкостный хроматограф ACCELA cпособен работать в широчайшем диапазоне сокростей потоков и давлений, обеспечивая как типичное для ВЭЖХ разделение на обычных колонках, так и сверхбыстрое и эффективное разделение на колонках с размером частиц сорбента менее 2 мкм при сверхвысоких давлениях (более 1000 атм.).

Система включает квотернарный градиентный инетрный насос, способный создавать давление свыше 1000 атм и с объемом задержки всего 65 мкл, обеспечивающий высокоскоростное хроматографическое разделение. Автосамплер ACCELA способен работать в цикле инжекции образца 30 секунд и обеспечивает высочайшую воспроизводимость ввода. Диодно-матричный детектор Accela PDA с минимизированным объемом проточной ячейки (2 мкл) оптимизирован для работы в режиме высокоскоростной хроматографии, использует патентованную технологию LightPipe и обеспечивает сохранение симметричной формы пиков, которую дает использование безупречных хроматографической системы и колонок.

Система идеально соединяется с масс-спектрометрами для создания самых мощных и лучших из доступных в мире систем ВЭЖХ/МС.

Колонки для рабты в режиме сверхвысокоэффективной хроматографии с размером зерна 1.9 мкм доступны от Thermo Electron для любых применений

CЕРИЯ TSP

Модульный принцип построения приборов ВЭЖХ позволяет заказчику гибко комплектовать оборудование для решения любых аналитических задач, а при их изменении оперативно и экономично его модифицировать. Широкий выбор модулей включает насосы - от изократического до четырехкомпонентного градиентного, от микроколоночного до полупрепаративного, все доступные детекторы, системы ввода образца - от ручных инжекторов до автосамплеров с возможностью любых манипуляций с образцами, мощное программное обеспечение для обработки результатов измерений и управления всеми модулями системы. Все модули сертифицированы по CSA, TUF/GS, FCC(EMI), VDE (EMI), ISO-9000, они компактны, обладают современным дизайном, просты в управлении, оснащены встроенным дисплеем и системой самодиагностики, позволяют создавать и сохранять в памяти методы задачи параметров. Они соответствуют критериям "Образцовой Лабораторной Практики" (GLP) и занесены в Реестр Измерительных средств РФ. Протоколы измерений выдаются в соответствии с Фармакопеями Англии, США, Германии и Франции.

Модульные системы TSP отличаются высочайшей надежностью и устойчивостью в эксплуатации.

Сочетание модулей обеспечивает аналитика всеми преимуществами интегральной системы, с одной стороны, и гибкостью модульной системы с другой. В какой бы области применений ВысокоЭффективной Жидкостной Хроматографии (ВЭЖХ) -фармакология, биотехнология, анализ объектов окружающей среды, клинический анализ, анализ пищевых продуктов и напитков, анализ нефтехимической и химической продукции - не использовался этот прибор, он всегда оптимально конфигурируется для того, чтобы соответcтвовать наивысшим требованиям.

Как исследовательская, так и высокопроизводительная рутинная системы обеспечивают:

Высокоэффективную дегазацию растворителя

Возможность работы с малыми и сверхмалыми количествами образца

Высочайшую чувствительность, как с УФ/ВИД детектором, так и с диодной матрицей (со знаменитой LightPipe технологией с длиной оптического пути 1 или 5 см по выбору)

Работу с различными колонкам

Высочайшую точность количественного анализа

Возможность автоматической работы с разными объемами образца

Среднеквадратичную ошибку по временам удерживания менее 0.3 %

Минимальную рабочую площадь, занимаемую системой

Высочайшую надежность и стабильность параметров.

Surveyor LC Pump - ВЭЖХ насос, обладающий лучшими показателями воспроизводимости времен удерживания среди всех доступных в мире четырехкомпонентных градиентных насосов. Интегрированный четырехканальный вакуумный дегазатор и демпфер пульсаций обеспечивают великолепную стабильность базовой линии для достижения максимальной чувствительности и точности количественного анализа.

Автодозатор обеспечивает высочайшую производительность и гибкость анализа. Широкий выбор поддонов для образцов - от стандартных виал до 96 - и 384-луночных микропластин - покрывает потребности практически всех применений. Новая технология обеспечивает ввод пробы практически без потерь, практически 5 мкл образца вводятся автодозатором из полного объема образца в 5 мкл.

SURVEYOR

УФ/Вид детектор и PDA (Детектор с диодной матрицей)

Surveyor UV/Vis - детектор ультрафиолетового и видимого света с переменной длиной волны является комбинацией экономичности и надежности с высочайшей чувствительностью LightPipe технологии. Широкий выбор проточных кювет делает этот детектор универсальным для всех применений от тех, которые используют капиллярную или микроколоночную хроматографию до полупрепаративных и препаративных.

Surveyor PDA детектор является самым чувствительным среди всех ВЭЖХ детекторов, использующих диодную матрицу. Оптика с двухламповым источником безразрывно покрывает весь диапазон длин волн от 190 до 800 нм. Волоконно-оптический формирователь светового пучка обеспечивает великолепное оптическое разрешение без принесения в жертву чувствительности.

Surveyor RI рефрактометрический детектор с термостатированной кюветой минимального объема с полным электронным контролем с компьютера.

Surveyor FL флуориметрический сканирующий детектор с высочайшей чувствительностью и возможностью детекции при флюоресценции, хемилюминесценции и фосфоресценции.

Широкий выбор автосэмплеров позволяет работать как с обычными виалами, так и 96-позиционными планшетами, широко используемыми в биохимии и клинической практике. Работа с ними облегчается благодаря применению аналогичных планшетов для подготовки проб методом твердофазной экстракции.

400 Электрический привод, петля Valco (20 мкл - стандарт) с возможностью частичного заполнения.

Карусель 96 образцов.

Электрический привод, термостат колонки, петля Valco (100 мкл - стандарт) с возможностью частичного заполнения.Режим AutoMix для подготовки проб. Карусель для образцов: 84 х 2 мл (образцы) + Зх 10 мл (реагенты). Встроенный термостат колонки.420

Петлевой автосэмплер для исследовательских работ с возможностью работы в режимах полного, частичного заполнения и ввода микролитровых проб. Широкий выбор каруселей (стандартная - 96 образцов).

Планшетный автосэмплер для работы с 96- и 384-позиционными планшетами. Ввод пробы в петлю под давлением, возможность ввода проб менее 1 мкл. Возможность установки податчика планшетов. ВЭЖХ

Основные производители оборудования для ВЭЖХ

· Waters - сверхпроизводительная хроматография, масс-спектрометрия, колонки, твердофазная экстракция;

· Varian, Inc. - хроматографы и колонки, аксессуары для твердофазной экстракции;

· Agilent Technologies - хроматографы и колонки;

· Hypersil - колонки и сорбенты.

· Merck KGaA - ТСХ пластины и аксессуары для ТСХ, колонки, сорбенты подвижные фазы для ВЭЖХ, аксессуары для твердофазной экстракции

· Dionex - оборудование и колонки для ВЭЖХ, особенно для ионной хроматографии.


Литература

1.Пилипенко А.Т., Пятницкий И.В. Аналитическая химия. В двух книгах: кн..1 – М.: Химия, 1990,-480с.

1. Пилипенко А.Т., Пятницкий И.В. Аналитическая химия. В двух книгах: кн..2 – М.: Химия, 1990,-480с.

2. Васильєв В.П. Аналитическая химия. В 2 ч. Ч. 2. Физико – химические методы анализа: Учеб. для Химко – технол. спец. вузов. – М.: Высш. шк., 1989. – 384с.

3. Гидрохимические материалы. Том 100. Методы и технические средства оперативного мониторинга качества поверхностных вод. Л.: Гидрометео-издат, 1991. – 200с.

4. Лурье Ю.Ю. Аналитическая химия производственных сточных вод / Ю.Ю. Лурье; М.: ХимияЮ, 1984. - 448с.

5. Юинг Г. Инструментальные методы химического анализа / Пер. с англ. М.: Мир, 1989. – 348 с.

6. Горелик Д.О., Конопелько Л.А., Панков Э.Д. Экологический мониторинг. В 2 т. СПб.: Крисмас. 2000. – 260 с.

7. Айвазов Б.В. Введение в хроматографию. М.: Высш. шк., 1983. – 450 с.

8. Гольдберг К.А., Вигдергауз М.С. Введение в газовую хроматографию. М.: Химия, 1990. – 329 с.

9. Столяров Б.В. и др. // Практическая газовая и жидкостная хроматография. СПб.: СПбГУ, 1998. - С. 81.

11. Горшков А.Г., Маринайте И.И. ВЭЖХ - метод мониторинга ПАУ в объектах окружающей среды

12. Торосян Г. О., Мартиросян В. А., Алексанян А. Р., Закарян М. О.. Удаление анилина из водных растворов с использованием отходов алюмотермического восстановления прокатной медной окалины

13. Л.А. Туркина, Г.Н. Королева Разработка методики определения щелочноземельных элементов и магния методом ионной высокоэффективной жидкостной хроматографии

14. Дульцева Г.Г., Дубцова Ю.Ю., Скубневская Г.И. Анализ комплексов кадмия в окружающей среде

Приложение

ОПРЕДЕЛЕНИЕ КЛОМАЗОНА В ВОДЕ ХРОМАТОГРАФИЧЕСКИМИ МЕТОДАМИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МУК 4.1.1415-03

1. Подготовлены: Федеральным научным центром гигиены им. Ф.Ф.

Эрисмана; Московской сельскохозяйственной академией им. К.А.

Тимирязева; при участии Департамента Госсанэпиднадзора Минздрава России. Разработчики методики указаны в конце.

3. Утверждены Главным государственным санитарным врачом

Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, акад. РАМН Г.Г. Онищенко 24 июня 2003 г.

5. Введены впервые.

1. Вводная часть

Фирма-производитель: ФМС (США).

Торговое название: КОММАНД.

Действующее вещество: кломазон.

2-(2-хлорбензил)-4,4-диметил-3-изоксалидин-3-он(ИЮПАК)

Светло-коричневая вязкая жидкость.

Температура плавления: 25 -С.

Температура кипения: 275 -С.

Давление паров при 25 -С: 19,2 мПа.

Коэффициент распределения н-октанол/вода: K logP = 2,5.

Хорошо растворим в ацетоне, гексане, этаноле, метаноле,

хлороформе, дихлорметане и ацетонитриле; растворимость в воде -

1,10 г/куб. дм. Стабилен при комнатной температуре не менее 2 лет, при 50 -С - не менее 3 месяцев.

Краткая токсикологическая характеристика: Острая пероральная

токсичность (LD) для крыс - 1369 - 2077 мг/кг; острая дермальная

токсичность (LD) для крыс - более 2000 мг/кг; острая

ингаляционная токсичность (LC) для крыс - 4,8 мг/куб. дм (4 ч).

Гигиенические нормативы. ПДК в воде - 0,02 мг/куб. дм.

Область применения препарата. Кломазон - гербицид избирательного действия, применяемый для борьбы со злаковыми и двудольными сорными растениями в посевах сои и риса при довсходовом или предпосевном внесении.

2. Методика определения кломазона в воде

хроматографическими методами

2.1. Основные положения

2.1.1. Принцип методики

Методика основана на извлечении кломазона из анализируемой пробы гексаном, концентрировании экстракта и последующем количественном определении альтернативными методами:

высокоэффективной жидкостной хроматографией (ВЭЖХ) с

ультрафиолетовым детектором, газожидкостной хроматографией (ГЖХ) с детектором постоянной скорости рекомбинации или тонкослойной хроматографией (ТСХ). Количественное определение проводится методом абсолютной калибровки.

2.1.2. Избирательность метода

В предлагаемых условиях метод специфичен в присутствии глобальных загрязнителей окружающей среды: хлорпроизводные циклопарафинов (изомеры ГХЦГ), соединений дифенильного ряда (ДДТ и его производные), их метаболитов - полихлорированных бензолов и фенолов, а также в присутствии трихлорацетата натрия, который может применяться на посевах в качестве гербицида.

2.1.3. Метрологическая характеристика метода (Р = 0,95)

Реактивы, растворы и материалы

Кломазон с содержанием д. в. 99,8%

(ФМС, США)

Азот, оч ГОСТ 9293-79

Аммиак водный, 25%-ный, ч ГОСТ 1277-81

Ацетон, ч ГОСТ 2603-79

н-Гексан, ч ГОСТ 2603-79

Водорода пероксид, 30%-ный водный раствор ГОСТ 10929-77

Изопропиловый спирт, хч ТУ 6-09-402-75

Кислота серная, хч ГОСТ 4203-77

Кислота хлороводородная (соляная), хч ГОСТ 3118-77

Метиловый спирт, хч ГОСТ

Натрия гидроксид, хч, 25%-ный водный раствор ГОСТ 4323-77

Натрия сульфат безводный, хч ГОСТ 1277-81

Серебра нитрат, хч ГОСТ 1277-81

2-Феноксиметанол, ч ТУ 6-09-3688-76

Хроматон N-AW-DMCS (0,16 - 0,20 мм)

с 5% SE-30, Хемапол, Чехия

Хроматон N-AW-DMCS (0,16 - 0,20 мм) с 1,5

ОV-17 + 1,95% QF-1, Хемапол, Чехия

Пластинки для ВЭТСХ (СССР)

Пластинки "Кизельгель 60 F-254" (ФРГ)

Пластинки "Силуфол" Чехия

Бумажные фильтры "белая лента", обеззоленные и предварительно промытые гексаном ТУ 6-09-2678-77

2.3. Приборы, аппаратура, посуда

Жидкостный хроматограф Милихром

с ультрафиолетовым детектором

Хроматографическая колонка стальная,

длиной 64 мм, внутренним диаметром 2 мм,

заполненная Силасорбом 600, зернением 5 мкм

Хроматограф газовый серии "Цвет" или

аналогичный, снабженный детектором постоянной

скорости рекомбинации (ДПР) с пределом

детектирования по линдану 4 x 10 г/куб. см

Хроматографическая колонка стеклянная, длиной

1 или 2 м, внутренним диаметром 2 - 3 мм

Микрошприц типа МШ-10, вместимостью 10 мкл ТУ 5Е2-833-024

Аппарат для встряхивания типа АВУ-6с ТУ 64-1-2851-78

Баня водяная ТУ 64-1-2850-76

Весы аналитические типа ВЛА-200 ГОСТ 34104-80Е

Камера хроматографическая ГОСТ 10565-74

Насос водоструйный ГОСТ 10696-75

Облучатель ртутно-кварцевый типа ОКН-11 ТУ 64-1-1618-77

Пульверизаторы стеклянные ГОСТ 10391-74

Ротационный вакуумный испаритель ИР-1М

или аналогичный ТУ 25-11-917-76

Установка компрессорная ТУ 64-1-2985-78

Шкаф сушильный ТУ 64-1-1411-76Е

Воронки делительные ГОСТ 3613-75

Колбы мерные, вместимостью 100 мл ГОСТ 1770-74

Цилиндры мерные, вместимостью 10, 50 мл ГОСТ 1770-74Е

Колбы грушевидные со шлифом,

вместимостью 100 мл ГОСТ 10394-72

Колбы конические, вместимостью 100 мл ГОСТ 22524-77

Пробирки центрифужные, мерные ГОСТ 25336-82Е

Пипетки, вместимостью 0,1, 1, 2, 5 и 10 мл ГОСТ 20292-74

Воронки химические, конусные, диаметром

34 - 40 мм ГОСТ 25336-82Е

2.4. Отбор проб

Отбор, хранение и подготовка проб проводятся в соответствии с

"Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов", утвержденными за N 2051-79 от 21.08.79

Отобранные пробы можно хранить в холодильнике не более 5 дней. Перед анализом воду (при наличии взвеси) фильтруют через неплотный бумажный фильтр.

2.5. Подготовка к определению

2.5.1. Метод ВЭЖХ

2.5.1.1. Подготовка подвижной фазы для ВЭЖХ

В мерную колбу вместимостью 100 мл помещают с помощью пипетки 5 мл изопопанола и 5 мл метанола, доливают до метки гексаном, перемешивают, фильтруют.

2.5.1.2. Кондиционирование колонки

Промыть колонку для ВЭЖХ смесью гексан-метанол-изопропанол (90:5:5, по объему) в течение 30 мин. при скорости подачи растворителя 100 мкл/мин.

2.5.2. Метод ГЖХ. Подготовка и кондиционирование колонки

Готовую насадку (5% SE-30 на Хроматоне N-AW-DMCS) засыпают в стеклянную колонку, уплотняют под вакуумом, колонку устанавливают в термостате хроматографа, не подсоединяя к детектору, и стабилизируют в токе азота при температуре 250 -С в течение 10 -12 ч.

2.5.3. Метод ТСХ

2.5.3.1. Приготовление проявляющих реагентов

2.5.3.1.1. Проявляющий реагент N 1

1 г нитрата серебра растворяют в 1 мл дистиллированной воды, добавляют 10 мл 2-феноксиметанола, 190 мл ацетона, 1 - 2 капли пероксида водорода, раствор перемешивают и переносят в склянку из темного стекла.

2.5.3.2.2. Проявляющий реагент N 2

0,5 г нитрата серебра растворяют в 5 мл дистиллированной воды в мерной колбе на 100 мл, добавляют 10 мл 25%-ного водного аммиака, раствор доводят до 100 мл ацетоном, перемешивают и переносят в склянку из темного стекла.

2.5.3.2. Приготовление подвижной фазы для ТСХ

В мерную колбу вместимостью 100 мл вносят 20 мл ацетона и добавляют до метки гексан, перемешивают. Смесь наливают в хроматографическую камеру слоем не более 6 - 8 мм за 30 мин. До начала хроматографирования.

2.5.4. Приготовление стандартных растворов

Основной стандартный раствор кломазона с содержанием 100 мкг/мл готовят растворением 0,010 г препарата, содержащего 99,8% д. в., в гексане в мерной колбе на 100 мл. Раствор хранится в холодильнике в течение месяца.

Рабочие стандартные растворы с концентрацией 0,4; 1,0; 2,0; 4,0; 10,0; 20 и 40,0 мкг/мл готовят из основного стандартного раствора кломазона соответствующим последовательным разбавлением гексаном.

Рабочие растворы хранят в холодильнике не более месяца.

2.5.5. Построение градуировочного графика

2.5.5.1. Градуировочный график А (измерение по п. 2.7.1, ВЭЖХ)

Для построения градуировочного графика в инжектор хроматографа вводят по 5 мкл рабочего стандартного раствора кломазона с концентрацией 4,0; 10,0; 20,0 и 40 мкг/мл.

2.5.5.2. Градуировочный график В (измерение по п. 2.7.2, ГЖХ)

Для построения градуировочного графика в испаритель хроматографа вводят по 5 мкл рабочего стандартного раствора кломазона с концентрацией 0,4; 1,0; 2,0; 4,0 и 10,0.

Осуществляют не менее 5 параллельных измерений. Находят среднее значение высоты хроматографического пика для каждой концентрации. Строят градуировочный график (А или В) зависимости высоты хроматографического пика в мм от концентрации кломазона в растворе в мкг/мл.

2.6. Описание определения

100 мл анализируемой пробы воды помещают в делительную воронку вместимостью 250 мл, приливают 10 мл 25%-ного водного раствора гидроксида натрия, перемешивают и добавляют 20 мл н-гексана. Воронку встряхивают в течение 3 мин., после разделения фаз гексановый слой сливают в грушевидную колбу вместимостью 100 мл, пропуская его через слой безводного сульфата натрия, помещенного в конической воронке на складчатом бумажном фильтре. Извлечение препарата из водной пробы повторяют еще дважды, используя по 20 мл н-гексана. Объединенный гексановый экстракт упаривают на ротационном вакуумном испарителе при температуре 40 -С почти досуха, остаток отдувают потоком воздуха или азота особой чистоты. Сухой остаток растворяют в 0,1 (ВЭЖХ, ТСХ) или 0,25 мл (ГЖХ) н- гексана и анализируют одним из хроматографических методов.

2.7. Условия хроматографирования

Жидкостный хроматограф с ультрафиолетовым детектором Милихром (Россия).

Колонка стальная длиной 64 мм, внутренним диаметром 2 мм,

заполненная Силасорбом 600, зернением 5 мкм.

Температура колонки: комнатная.

Подвижная фаза: гексан-изопропанол-метанол (90:5:5, по объему).

Скорость потока элюента: 100 мкл/мин.

Рабочая длина волны: 240 нм.

Чувствительность: 0,4 ед. абсорбции на шкалу.

Объем вводимой пробы: 5 мкл.

Время выхода кломазона: около 6 мин.

Линейный диапазон детектирования: 20 - 200 нг.

Образцы, дающие пики большие, чем стандартный раствор с концентрацией 40 мкг/мл, разбавляют подвижной фазой для ВЭЖХ.

Хроматограф газовый "Цвет-570" с детектором постоянной скорости рекомбинации ионов.

Колонка стеклянная длиной 1 м, внутренним диаметром 3 мм, заполненная Хроматоном N-AW-DMCS с 5% SE-30 (0,16 - 0,20 мм).

Рабочая шкала электрометра 64 x 10 10Ом.

Скорость движения ленты самописца 200 мм/ч.

Температура термостата колонки - 190 -С

детектора - 300 -С

испарителя - 220 -С

Скорость газа-носителя (азота) - 60 мл/мин.

Объем вводимой пробы - 5 мкл.

Время выхода кломазона - 2,5 мин.

Линейный диапазон детектирования: 2 - 50 нг.

Образцы, дающие пики большие, чем стандартный раствор с концентрацией 10 мкг/мл, разбавляют гексаном.

Для повышения точности идентификации кломазона при совместном присутствии в пробе гамма-ГХЦГ, имеющего близкое время удерживания, кломазон удаляется из пробы обработкой концентрированной серной кислотой. Повторный анализ пробы позволяет установить вклад кломазона в первичный хроматографический сигнал.

Гексановый раствор в колбе, полученный по п. 2.6 количественно

(или его аликвотную часть) наносят на хроматографические пластинки "Силуфол", "Кизельгель 60F-254" или "Пластинки для ВЭТСХ". Рядом наносят стандартные растворы в объеме, соответствующем содержанию кломазона 1, 2, 5 и 10 мкг. Пластинку помещают в камеру для хроматографирования, содержащую смесь н-гексан-ацетон (4:1, по объему). После развития хроматограммы пластинку вынимают из камеры, помещают ее под тягу до испарения растворителей, затем обрабатывают одним из проявляющих реагентов и помещают под ультрафиолетовую лампу на 5 мин. Зона локализации препарата на пластинках "Силуфол", "Пластинках для ВЭТСХ" и "Кизельгель 60F- 254" проявляется в виде серо-бурых пятен с величиной Rf 0,35, 0,85 и 0,43, соответственно. Для определения кломазона методом ТСХ можно использовать пластинки "Алюграм" и "Полиграм" (производства ФРГ). Величина Rf кломазона на этих пластинках составляет 0,37 и 0,38, соответственно.

3. Требования техники безопасности

Необходимо соблюдать общепринятые правила безопасности при работе с органическими растворителями, токсичными веществами, электронагревательными приборами.

4. Контроль погрешности измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с рекомендациями МИ 2335-95. ГСИ "Внутренний контроль качества результатов количественного химического анализа".

5. Разработчики

Юдина Т.В., Федорова Н.Е. (ФНЦГ им. Ф.Ф. Эрисмана).

Давидюк Е.И. (УкрНИИГИНТОКС, г. Киев); Кисенко М.А., Демченко В.Ф. (Институт медицины труда АН и АМН Украины, г. Киев).

Жидкостно-адсорбционная хроматография на колонке

Разделение смеси веществ в адсорбционной колонке происходит в результате различия их в сорбируемости на данном адсорбенте (в соответствии с законом адсорбционного замещения, установленного М. С. Цветом).

Адсорбентами являются пористые тела с сильно развитой внутренней поверхностью, удерживающие жидкости с помощью межмолекулярных и поверхностных явлений. Это могут быть полярные и неполярные неорганические и органические соединения. К полярным адсорбентам относятся силикагель (высушенная желатинообразная двуокись кремния), оксид алюминия, карбонат кальция, целлюлоза, крахмал и др. Неполярные сорбенты - активированный уголь, порошок резины и множество других, полученных синтетическим путем.

К адсорбентам предъявляют следующие требования: S они не должны вступать в химические реакции с подвижной фазой и разделяемыми веществами; S должны обладать механической прочностью; S зерна адсорбента должны быть одинаковой степени дисперсности.

При выборе условий для хроматографического процесса учитывают свойства адсорбента и адсорбируемых веществ.

В классическом варианте жидкостной колоночной хроматографии (ЖКХ) через хроматографическую колонку, представляющую собой стеклянную трубку диаметром 0,5 - 5 см и длиной 20 - 100 см, заполненную сорбентом (НФ), пропускают элюент (ПФ). Элюент движется под воздействием силы тяжести. Скорость его движения можно регулировать имеющимся внизу колонки краном. Анализируемую смесь помещают в верхнюю часть колонки. По мере продвижения пробы по колонке происходит разделение компонентов. Через определенные промежутки времени отбирают фракции выделившегося из колонки элюента, который анализируют каким-либо методом, позволяющим измерять концентрации определяемых веществ.

Колоночная адсорбционная хроматография в настоящее время применяется, главным образом не как самостоятельный метод анализа, а как способ предварительного (иногда и конечного) разделения сложных смесей на более простые, т.е. для подготовки к анализу другими методами (в том числе и хроматографическими). Например, на колонке с окисью алюминия разделяют смесь токоферолов, пропускают элюент и собирают фракцию а-токоферола для последующего определения фотометрическим методом.

Хроматографическое разделение смеси на колонке вследствие медленного продвижения ПФ занимает много времени. Для ускорения процесса хроматографирование проводят под давлением. Этот метод называют высокоэффективной жидкостной хроматографией (ВЖХ)

Модернизация аппаратуры, применяемой в классической жидкостной колоночной хроматографии, сделала ее одним из перспективных и современных методов анализа. Высокоэффективная жидкостная хроматография является удобным способом разделения, препаративного выделения и проведения качественного и количественного анализа нелетучих термолабильных соединений как с малой, так с большой молекулярной массой.


В зависимости от типа применяемого сорбента в данном методе используют 2 варианта хроматографирования: на полярном сорбенте с использованием неполярного элюента (вариант прямой фазы) и на неполярном сорбенте с использованием полярного элюента - так называемая об-ращенно-фазовая высокоэффективная жидкостная хроматография (Оф ВЖХ).

При переходе элюента к элюенту равновесие в условиях ОфВЖХ устанавливается во много раз быстрее, чем в условиях полярных сорбенгов и неводных ПФ. Вследствие этого, а также удобства работы с водными и водно-спиртовыми элюентами, ОфВЖХ получила в настоящее время большую популярность. Большинство анализов при помощи ВЖХ проводят именно этим методом.

Аппаратура для ВЖХ

Комплект современного оборудования для ВЖХ, как правило, состоит из двух насосов 3,4 (рис. 7.1.1.1), управляемых микропроцессором 5, и подающих элюент по определенной программе. Насосы создают давление до 40 МПа. Проба вводится через специальное устройство (инжектор) 7 непосредственно в поток элюента. После прохождения через хроматографическую колонку 8 вещества детектируются высокочувствительным проточным детектором 9, сигнал которого регистрируется и обрабатывается микро-ЭВМ 11. При необходимости, в момент выхода пика автоматически отбираются фракции.

Колонки для ВЖХ выполняют из нержавеющей стали с внутренним диаметром 2 - 6 мм и длиной 10-25 см. Колонки заполняют сорбентом (НФ). В качестве НФ используются силикагель, оксид алюминия или модифицированные сорбенты. Модифицируют обычно силикагель, внедряя химическим путем в его поверхность различные функциональные группы.

Детекторы. Регистрация выхода из колонки отдельного компонента производится с помощью детектора. Для регистрации можно использовать изменение любого аналитического сигнала, идущего от подвижной фазы и связанного с природой и количеством компонента смеси. В жидкостной хроматографии используют такие аналитические сигналы, как светопоглощение или светоиспускание выходящего раствора (фотометрические и флуориметрические детекторы), показатель преломления (рефрактометрические детекторы), потенциал и электрическая проводимость (электрохимические детекторы) и др.

Непрерывно детектируемый сигнал регистрируется самописцем. Хро-матограмма представляет собой зафиксированную на ленте самописца последовательность сигналов детектора, вырабатываемых при выходе из колонки отдельных компонентов смеси. В случае разделения смеси на внешней хроматограмме видны отдельные пики. Положение пика на хромато-грамме используют для целей идентификации вещества, высоту или площадь пика - для целей количественного определения.

Качественный анализ

Важнейшие характеристики хроматограммы - время удерживания tR и связанный с ней удерживаемый объем - отражают природу веществ, их способность к сорбции на материале неподвижной фазы и, следовательно, при постоянстве условий хроматографирования являются средством идентификации вещества. Для данной колонки с определенными скоростью потока и температурой время удерживания каждого соединения постоянно (рис.7.1.1.2), где t.R(A) - время удерживания компонента А анализируемой смеси с момента ввода в колонку до появления на выходе из колонки максимума пика, 1К(вс) - время удерживания внутреннего стандарта (первоначально отсутствующее в анализируемой смеси вещество), h - высота пика (мм), аш - ширина пика на половине его высоты, мм.

Для идентификации вещества по хроматограмме обычно используют стандартные образцы или чистые вещества. Сравнивают время удерживания неизвестного компонента IR* с временем удерживания IRCT известных веществ. Но более надежна идентификация по измерению относительного времени удерживания

При этом в колонку сначала вводят известное вещество (внутренний стандарт) и измеряют время его удерживания tR(Bc), затем хроматографиче-ски разделяют (хроматографируют) исследуемую смесь, в которую предварительно добавляют внутренний стандарт. Относительное время удерживания определяют по формуле (7.1.1.1).

Количественный анализ

В основе этого анализа лежит зависимость высоты пика h или его площади S от количества вещества. Для узких пиков предпочтительнее измерение h, для широких размытых - S. Площадь пика измеряют разными способами: умножением высоты пика (h) на его ширину (ai/2), измеренную на половине его высоты (рис.7.2.3); планиметрированием; с помощью интегратора. Электрическими или электронными интеграторами снабжены современные хроматографы.

Для определения содержания веществ в пробе используют в основном три метода: метод абсолютной градуировки, метод внутренней нормализации и метод внутреннего стандарта.

Метод абсолютной градуировки основан на предварительном определении зависимости между количеством введенного вещества и площадью или высотой пика на хроматограмме. В хроматограмму вводят известное количество градуировочной смеси и определяют площади или высота полученных пиков. Строят график зависимости площади или высоты пика от количества введенного вещества. Анализируют исследуемый образец, измеряют площадь или высоту пика определяемого компонента и на основании градировочного графика рассчитывают его количество.

Этот метод дает информацию только об относительном содержании компонента в смеси, но не позволяет определить его абсолютную величину.

Метод внутреннего стандарта основан на сравнении выбранного параметра пика анализируемого вещества с тем же параметром стандартного вещества, введенного в пробу в известном количестве. В исследуемую пробу вводят известное количество такого стандартного вещества, пик которого достаточно хорошо отделяется от пиков компонентов исследуемой смеси

В последних двух методах требуется введение поправочных коэффициентов, характеризующих чувствительность используемых детекторов к анализируемым веществам. Для разных типов детекторов и разных веществ коэффициент чувствительности определяется экспериментально.

В жидкостной адсорбционной хроматографии используется также анализ фракций растворов, собранных в момент выхода вещества из колонки. Анализ может быть проведен различными физико-химическими методами.

Жидкостную адсорбционную хроматографию применяют в первую очередь для разделения органических веществ. Этим методом весьма успешно изучают состав нефти, углеводородов, эффективно разделяют-транс- и цис- изомеры, алкалоиды и др. С помощью ВЖХ можно определять красители, органические кислоты, аминокислоты, сахара, примеси пестицидов и гербицидов, лекарственных веществ и других загрязнителей в пищевых продуктах.

error: