Движения солнца по галактике. С какой скоростью мы движемся сквозь вселенную. Скорость движения Солнца в Галактике относительно ближайших звезд

Галактикой называют крупные формирования звезд, газа, пыли, которые удерживаются вместе силой гравитации. Эти крупнейшие соединения во Вселенной могут различаться формой и размерами. Большая часть космических объектов входит в состав определенной галактики. Это звезды, планеты, спутники, туманности, черные дыры и астероиды. Некоторые из галактик обладают большим количеством невидимой темной энергии. Из-за того, что галактики разделяет пустое космическое пространство, их образно называют оазисами в космической пустыне..

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются Нет
20% 55% 5%

Наша галактика

Ближайшая к нам звезда Солнце относится к миллиарду звезд в галактике Млечный путь. Посмотрев на ночное звездное небо, тяжело не заметить широкую полосу, усыпанную звездами. Скопление этих звезд древние греки назвали Галактикой.

Если бы у нас была возможность посмотреть на эту звездную систему со стороны, мы бы заметили сплюснутый шар, в котором насчитывается свыше 150 млрд. звезд. Наша галактика имеет такие размеры, которые тяжело представить в своем воображении. Луч света путешествует с одной ее стороны на другую сотню тысяч земных лет! Центр нашей Галактики занимает ядро, от которого отходят огромные спиральные ветви, заполненные звездами. Расстояние от Солнца до ядра Галактики составляет 30 тысяч световых лет. Солнечная система расположена на окраине Млечного пути.

Звезды в Галактике несмотря на огромное скопление космических тел встречаются редко. Например, расстояние между ближайшими звездами в десятки миллионов раз превышает их диаметры. Нельзя сказать, что звезды разбросаны во Вселенной хаотично. Их местоположение зависит от сил гравитации, которые удерживают небесное тело в определенной плоскости. Звездные системы со своими гравитационными полями и называют галактиками. Кроме звезд, в состав галактики входит газ и межзвездная пыль.

Состав галактик.

Вселенную составляет также множество других галактик. Наиболее приближенные к нам отдалены на расстояние 150 тыс. световых лет. Их можно увидеть на небе южного полушария в виде маленьких туманных пятнышек. Их впервые описал участник Магеллановой экспедиции вокруг мира Пигафетт. В науку они вошли под названием Большого и Малого Магеллановых Облаков.

Ближе всего к нам расположена галактика под названием Туманность Андромеды. Она имеет очень большие размеры, поэтому видна с Земли в обычный бинокль, а в ясную погоду – даже невооруженным глазом.

Само строение галактики напоминает гигантскую выпуклую в пространстве спираль. На одном из спиральных рукавов за ¾ расстояния от центра находится Солнечная система. Все в галактике кружится вокруг центрального ядра и подчиняется силе его гравитации. В 1962 году астрономом Эдвином Хабблом была проведена классификация галактик в зависимости от их формы. Все галактики ученый разделил на эллиптические, спиральные, неправильные и галактики с перемычкой.

В части Вселенной, доступной для астрономических исследований, расположены миллиарды галактик. В совокупности их астрономы называют Метагалактикой.

Галактики Вселенной

Галактики представлены крупными группировками звезд, газа, пыли, удерживаемых вместе гравитацией. Они могут существенно отличаться по форме и размерам. Большинство космических объектов относятся к какой-либо галактике. Это черные дыры, астероиды, звезды со спутниками и планетами, туманности, нейтронные спутники.

Большинство галактик Вселенной включают огромное количество невидимой темной энергии. Так как пространство между различными галактиками считается пустотным, то их нередко называют оазисами в пустоте космоса. Например, звезда по имени Солнце – одни из миллиардов звезд в галактике «Млечный Путь», находящейся в нашей Вселенной. В ¾ расстояния от центра данной спирали находится Солнечная система. В этой галактике все беспрерывно движется вокруг центрального ядра, которое подчиняется его гравитации. Однако и ядро тоже движется вместе с галактикой. При этом все галактики двигаются на сверхскоростях.
Астроном Эдвин Хаббл в 1962 году провел логическую классификацию галактик Вселенной с учетом их формы. Сейчас галактики разделяются на 4 основные группы: эллиптические, спиральные, галактики с баром (перемычкой) и неправильные.
Какая самая большая галактика в нашей Вселенной?
Наиболее крупной галактикой во Вселенной является линзовидная галактика сверхгиганских размеров, находящаяся в скоплении Abell 2029.

Спиральные галактики

Они представляют собой галактики, которые по своей форме напоминают плоский спиралевидный диск с ярким центром (ядром). Млечный Путь – типичная спиральная галактика. Спиральные галактики принято называть с буквы S, они разделяются на 4 подгруппы: Sa, Sо, Sc и Sb. Галактики, относящиеся к группе Sо, отличаются светлыми ядрами, которые не имеют спиральных рукавов. Что касается галактик Sа, то они отличаются плотными спиральными рукавами, плотно обмотанными вокруг центрального ядра. Рукава галактик Sc и Sb редко окружают ядро.

Спиральные галактики каталога Мессье

Галактики с перемычкой

Галактики с баром (перемычкой) похожи на спиральные галактики, но все же имеют одно отличие. В таких галактиках спирали начинаются не от ядра, а от перемычек. Около 1/3 всех галактик входят в эту категорию. Их принято обозначать буквами SB. В свою очередь, они разделяются на 3 подгруппы Sbc, SBb, SBa. Разница между этими тремя группами определяется формой и длиной перемычек, откуда, собственно, и начинаются рукава спиралей.

Спиральные галактики с перемычкой каталога Мессье

Эллиптические галактики

Форма галактик может варьироваться от идеально круглой до вытянутого овала. Их отличительной чертой является отсутствие центрального яркого ядра. Они обозначаются буквой Е и разделяются на 6 подгрупп (по форме). Такие формы обознаются от Е0 до Е7. Первые имеют почти круглую форму, тогда как Е7 характеризуются чрезвычайно вытянутой формой.

Эллиптические галактики каталога Мессье

Неправильные галактики

Они не имеют какой-либо выраженной структуры или формы. Неправильные галактики принято разделять на 2 класса: IO и Im. Наиболее распространенным является Im класс галактик (он имеет только незначительный намек на структуру). В некоторых случаях прослеживаются спиральные остатки. IO относится к классу галактик, хаотических по форме. Малые и Большие Магеллановы Облака – яркий пример Im класса.

Неправильные галактики каталога Мессье

Таблица характеристик основных видов галактик

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются нет
Процент от общего числа галактик 20% 55% 5%

Большой портрет галактик

Не так давно астрономы начали работать над совместным проектом для выявления расположения галактик во всей Вселенной. Их задача – получить более детальную картину общей структуры и формы Вселенной в больших масштабах. К сожалению, масштабы Вселенной сложно оценить для понимания многими людьми. Взять хотя бы нашу галактику, состоящую более чем из ста миллиардов звезд. Во Вселенной существуют еще миллиарды галактик. Обнаружены дальние галактики, но мы видим их свет таким, который был практически 9 млрд лет назад (нас разделяет такое большое расстояние).

Астрономам стало известно, что большинство галактик относятся к определенной группе (ее стали называть «кластер»). Млечный путь – часть кластера, который, в свою очередь, состоит из сорока известных галактик. Как правило, большинство таких кластеров представлены частью еще большей группировки, которую называют сверхскоплениями.

Наш кластер – часть сверхскопления, которое принято называть скоплением Девы. Такой массивный кластер состоит больше чем из 2 тыс. галактик. В то время, когда астрономы создали карту расположения данных галактик, сверхскопления начали принимать конкретную форму. Большие сверхскопления собрались вокруг того, что представляется как бы гигантскими пузырями или пустотами. Что это за структура, никто еще не знает. Мы не понимаем, что может находиться внутри этих пустот. По предположению, они могут быть заполнены определенным типом неизвестной ученым темной материи или же иметь внутри пустое пространство. Перед тем как мы узнаем природу таких пустот, пройдет много времени.

Галактические вычисления

Эдвин Хаббл является основоположником галактических исследований. Он первый, кому удалось определить, как можно вычислить точное расстояние до галактики. В своих исследованиях он опирался на метод пульсирующих звезд, которые более известны как цефеиды. Ученый смог заметить связь между периодом, который нужен для завершения одной пульсации яркости, и той энергией, которую выделяет звезда. Результаты его исследований стали серьезным прорывом в области галактических исследований. Помимо этого, он обнаружил, что есть корреляция между красным спектром, излучаемым галактикой, и расстоянием до нее (постоянная Хаббла).

В наше время астрономы могут измерять расстояние и скорости галактики посредством измерения количества красного смещения в спектре. Известно, что все галактики Вселенной движутся друг от друга. Чем дальше галактика находится от Земли, тем больше ее скорость движения.

Чтобы визуализировать данную теорию, достаточно представить себя за рулем авто, который двигается на скорости 50 км в час. Перед Вами едет авто быстрее на 50 км в час, что говорит о том, что скорость его передвижения составляет 100 км в час. Перед ним есть еще одно авто, которое движется быстрее еще на 50 км в час. Несмотря на то что скорость всех 3 машин будет разной на 50 км в час, первый автомобиль на самом деле движется от Вас на 100 км в час быстрее. Поскольку красный спектр говорит о скорости движения галактики от нас, получается следующее: чем больше красное смещение, тем, соответственно, галактика быстрее движется и тем большее ее расстояние от нас.

Сейчас мы располагаем новыми инструментами, помогающими ученым в поисках новых галактик. Благодаря космическому телескопу Хаббла ученым удалось увидеть то, о чем раньше оставалось только мечтать. Высокая мощность этого телескопа обеспечивает хорошую видимость даже мелких деталей в ближних галактиках и позволяет изучать более дальние, которые никому еще не были известны. В настоящее время новые инструменты наблюдения космоса находятся в стадии разработки, а в скором будущем они помогут получить более глубокое понимание структуры Вселенной.

Типы галактик

  • Спиральные галактики. По форме напоминают плоский спиралевидный диск с ярко выраженным центром, так называемым ядром. Наша галактика Млечный путь относится к этой категории. В данном разделе портала сайт Вы встретите много различных статей с описанием космических объектов нашей Галактики.
  • Галактики с перемычкой. Напоминают спиральные, только от них они отличаются одним существенным отличием. Спирали отходят не от ядра, а от так называемых перемычек. К этой категории можно отнести треть всех галактик Вселенной.
  • Эллиптические галактики обладают различными формами: от досконально круглой до овально вытянутой. Сравнительно со спиральными, у них отсутствует центральное ярко выраженное ядро.
  • Неправильные галактики не обладают характерной формой или структурой. Их нельзя отнести к какому-либо из перечисленных выше типов. Неправильных галактик насчитывается куда меньшее количество на просторах Вселенной.

Астрономы в последнее время запустили совместный проект по выявлению расположения всех галактик во Вселенной. Ученые надеются получить более наглядную картину ее структуры в большом масштабе. Размер Вселенной тяжело оценить человеческому мышлению и пониманию. Одна только наша галактика – это соединение сотней миллиардов звезд. А таких галактик насчитываются миллиарды. Мы можем видеть свет от обнаруженных дальних галактик, но не подразумевать даже того, что смотрим в прошлое, ведь световой луч доходит до нас за десятки миллиардов лет, настолько великое расстояние нас разделяет.

Астрономы также привязывают большинство галактик к определенным группам, которые называют кластерами. Наш Млечный путь относится к кластеру, который состоит из 40 разведанных галактик. Такие кластеры объединяют в большие группировки, называющиеся сверхскоплениями. Кластер с нашей галактикой входит в сверхскопление Девы. В составе этого гигантского кластера находится более 2 тысяч галактик. После того как ученые начали рисовать карту размещения данных галактик, сверхскопления получили определенные формы. Большинство галактических сверхскоплений окружали гигантские пустоты. Никто не знает, что может быть внутри этих пустот: космическое пространство наподобие межпланетного или же новая форма материи. Понадобится много времени, чтобы раскрыть эту загадку.

Взаимодействие галактик

Не менее интересным для взора ученых представляется вопрос о взаимодействии галактик как компонентов космических систем. Не секрет, что космические объекты находятся в постоянном движении. Галактики не исключение из этого правила. Некоторые из видов галактик могли бы стать причиной столкновения или слияния двух космических систем. Если вникнуть, какими представляются данные космические объекты, более понятными становятся масштабные изменения как результат их взаимодействия. Во время столкновения двух космических систем выплескивается гигантское количество энергии. Встреча двух галактик на просторах Вселенной – даже более вероятное событие, чем столкновение двух звезд. Не всегда столкновение галактик заканчивается взрывом. Небольшая космическая система может свободно пройти мимо своего более крупного аналога, изменив только незначительно его структуру.

Таким образом, происходит образование формирований, схожих внешним видом на вытянутые коридоры. В их составе выделяются звезды и газовые зоны, часто формируются новые светила. Бывают случаи, что галактики не ударяются, а только слегка соприкасаются друг с другом. Однако даже такое взаимодействие запускает цепочку необратимых процессов, которые приводят к огромным изменениям в структуре обеих галактик.

Какое будущее ожидает нашу галактику?

Как предполагают ученые, не исключено, что в далеком будущем Млечный путь сумеет поглотить крохотную по космическим размерам систему-спутник, которая расположена от нас на расстоянии 50 световых лет. Исследования показывают, что этот спутник имеет продолжительный жизненный потенциал, но при столкновении с гигантским соседом, вероятнее всего, закончит отдельное существование. Также астрономы предрекают столкновение Млечного пути и Туманности Андромеды. Галактики движутся друг другу навстречу со скоростью света. До вероятного столкновения ждать примерно три миллиарда земных лет. Однако будет ли оно на самом деле сейчас – тяжело рассуждать из-за нехватки данных о движении обеих космических систем.

Описание галактик на Kvant . Space

Портал сайт перенесет Вас в мир интересного и увлекательного космоса. Вы узнаете природу построения Вселенной, ознакомитесь со структурой известных больших галактик, их составляющими. Читая статьи о нашей галактике, нам становятся более понятными некоторые из явлений, которые можно наблюдать в ночном небе.

Все галактики от Земли находятся на огромном расстоянии. Невооруженным глазом можно увидеть только три галактики: Большое и малое Магеллановы облака и Туманность Андромеды. Все галактики сосчитать нереально. Ученые предполагают, что их количество составляет около 100 миллиардов. Пространственное расположение галактик неравномерно – одна область может содержать огромное их количество, во второй вовсе не будет ни одной даже маленькой галактики. Отделить изображение галактик от отдельных звезд астрономам не удавалось до начала 90-х годов. В это время насчитывалось около 30 галактик с отдельными звездами. Всех их причисляли к Местной группе. В 1990 году состоялось величественное событие в развитии астрономии как науки – на орбиту Земли был запущен телескоп Хаббла. Именно эта техника, а также новые наземные 10-метровые телескопы дали возможность увидеть значительно большее число разрешенных галактик.

На сегодняшний день «астрономические умы» мира ломают голову о роли темной материи в построении галактик, которая проявляет себя лишь в гравитационном взаимодействии. Например, в некоторых больших галактиках она составляет около 90% общей массы, в то время как карликовые галактики могут вовсе ее не содержать.

Эволюция галактик

Ученые считают, что возникновение галактик – это естественный этап эволюции Вселенной, который проходил под воздействием сил гравитации. Приблизительно 14 млрд. лет тому назад началось формирование протоскоплений в первичном веществе. Далее, под воздействием различных динамических процессов состоялось выделение галактических групп. Изобилие форм галактик объясняется разнообразием начальных условий в их формировании.

На сжатие галактики уходит около 3 млрд. лет. За данный период времени газовое облако превращается в звездную систему. Образование звезд происходит под воздействием гравитационного сжатия газовых облаков. После достижения в центре облака определенной температуры и плотности, достаточной для начала термоядерных реакций, образуется новая звезда. Массивные звезды образованы из термоядерных химических элементов, по массе превосходящих гелий. Данные элементы создают первичную гелиево-водородную среду. Во время грандиозных взрывов сверхновых звезд образуются элементы, тяжелее железа. Из этого следует, что галактика состоит из двух поколений звезд. Первое поколение – это наиболее старые звезды, состоящие из гелия, водорода и очень небольшого количества тяжелых элементов. Звезды второго поколения обладают более заметной примесью тяжелых элементов, поскольку они формируются из первичного газа, обогащенного тяжелыми элементами.

В современной астрономии галактикам как космическим структурам отводится отдельное место. В деталях изучаются виды галактик, особенности их взаимодействия, сходства и отличия, делается прогноз их будущего. Эта область содержит еще много непонятного, того, что требует дополнительного изучения. Современная наука решила много вопросов относительно видов построения галактик, но осталось также много белых пятен, связанных с образованием этих космических систем. Современные темпы модернизации исследовательской техники, разработка новых методологий исследования космических тел дают надежды на значительный прорыв в будущем. Так или иначе, галактики всегда будут в центре научных исследований. И основано это не только на человеческом любопытстве. Получив данные о закономерностях развития космических систем, мы сможем спрогнозировать будущее нашей галактики под названием Млечный путь.

Самые интересные новости, научные, авторские статьи об изучении галактик Вам предоставит портал сайт. Здесь Вы сможете найти захватывающие видео, качественные снимки со спутников и телескопов, которые не оставляют равнодушными. Погружайтесь в мир неизведанного космоса вместе с нами!

Весьма советуем с ним познакомиться. Там Вы найдете много новых друзей. Кроме того, это наиболее быстрый и действенный способ связаться с администраторами проекта. Продолжает работать раздел Обновления антивирусов - всегда актуальные бесплатные обновления для Dr Web и NOD. Не успели что-то прочитать? Полное содержание бегущей строки можно найти по этой ссылке .

В данной статье рассматривается скорость движения Солнца и Галактики относительно разных систем отсчета:

Скорость движения Солнца в Галактике относительно ближайших звезд, видимых звезд и центра Млечного Пути;

Скорость движения Галактики относительно местной группы галактик, удаленных звездных скоплений и реликтового излучения.

Краткая характеристика Галактики Млечный Путь.

Описание Галактики.

Прежде чем приступить к изучению скорости движения Солнца и Галактики во Вселенной, познакомимся с нашей Галактикой поближе.

Мы живем как бы в гигантском «звездном городе». Вернее – в нем «живет» наше Солнце. Населением этого «города» являются разнообразные звезды, и «проживает» их в нем более двухсот миллиардов. Несметное множество солнц рождается в нем, переживает свою молодость, средний возраст и старость – проходят долгий и сложный жизненный путь, длящийся миллиарды лет.

Громадны размеры этого «звездного города» - Галактики. Расстояния между соседними звездами в среднем равны тысячам миллиардов километров (6*1013 км). А таких соседей свыше 200 миллиардов.

Если бы мы со скоростью света (300 000 км/сек) мчались от одного конца Галактики до другого, на это ушло бы около 100 тысяч лет.

Вся наша звездная система медленно вращается, как гигантское колесо, состоящее из миллиардов солнц.


Орбита Солнца

В центре Галактики, по всей видимости, располагается сверхмассивная чёрная дыра (Стрелец A*) (около 4,3 миллиона солнечных масс) вокруг которой, предположительно, вращается чёрная дыра средней массы от 1000 до 10 000 масс Солнца и периодом обращения около 100 лет и несколько тысяч сравнительно небольших. Их совместное гравитационное действие на соседние звёзды заставляет последние двигаться по необычным траекториям. Существует предположение, что большинство галактик имеет сверхмассивные чёрные дыры в своем ядре.

Для центральных участков Галактики характерна сильная концентрация звёзд: в каждом кубическом парсеке вблизи центра их содержатся многие тысячи. Расстояния между звёздами в десятки и сотни раз меньше, чем в окрестностях Солнца.

Ядро Галактики с огромной силой притягивает все остальные звезды. Но громадное количество звезд расселено и по всему «звездному городу». А они тоже притягивают друг друга в разных направлениях, и это сложно влияет на движение каждой звезды. Поэтому Солнце и миллиарды других звезд в основном движутся по круговым путям или эллипсам вокруг центра Галактики. Но это лишь «в основном» - присмотревшись, мы увидели бы, что они движутся по более сложным кривым, извивающимся путям среди окружающих звезд.

Характеристика Галактики Млечный Путь:

Место нахождения Солнца в Галактике.

Где в Галактике находится Солнце и движется ли оно (а с ним и Земля, и мы с вами)? Не находимся ли мы в «центре города» или хотя бы где-нибудь недалеко от него? Исследования показали, что Солнце и солнечная система расположены на громадном расстоянии от центра Галактики, ближе к «городским окраинам» (26 000 ± 1 400 св. лет).

Солнце расположено в плоскости нашей Галактики и удалено от ее центра на 8 кпк и от плоскости Галактики примерно на 25 пк (1 пк (парсек) = 3,2616 светового года). В области Галактики, где расположено Солнце, звездная плотность составляет 0,12 звезд на пк3.


Модель нашей Галактики

Скорость движения Солнца в Галактике.

Скорость движения Солнца в Галактике принято рассматривать относительно разных систем отсчета:

Относительно ближайших звезд.

Относительно всех ярких звезд, видимых невооруженным глазом.

Относительно межзвездного газа.

Относительно центра Галактики.

1. Скорость движения Солнца в Галактике относительно ближайших звезд.

Подобно тому, как скорость летящего самолета рассматривается по отношению к Земле, не учитывая полета самой Земли, так и скорость движения Солнца можно определить относительно ближайших к нему звезд. Таким, как звезды системы Сириус, Альфа Центавра и др.

Эта скорость движения Солнца в Галактике сравнительно невелика: всего 20 км/сек или 4 а.е. (1астрономическая единица равна среднему расстоянию от Земли до Солнца – 149,6 млн км.)

Солнце относительно ближайших звезд движется по направлению к точке (апексу), лежащей на границе созвездий Геркулеса и Лиры, примерно под углом 25° к плоскости Галактики. Экваториальные координаты апекса = 270°, = 30°.

2. Скорость движения Солнца в Галактике относительно видимых звезд.

Если рассматривать движение Солнца в Галактике Млечный Путь относительно всех звезд, видимых без телескопа, то его скорость и того меньше.

Скорость движения Солнца в Галактике относительно видимых звезд составляет - 15 км/сек или 3 а.е.

Апекс движения Солнца в данном случае также лежит в созвездии Геркулеса и имеет следующие экваториальные координаты: = 265°, = 21°.


Скорость движения Солнца относительно ближайших звезд и межзвездного газа

3. Скорость движения Солнца в Галактике относительно межзвездного газа.

Следующий объект Галактики, относительно которого мы рассмотрим скорость движения Солнца, - это межзвездный газ.

Вселенские просторы далеко не так пустынны, как считалось долгое время. Хотя и в небольших количествах, но везде присутствует межзвездный газ, наполняя собой все уголки мирозданья. На межзвездный газ, при кажущейся пустоте незаполненного пространства Вселенной, приходится почти 99% от совокупной массы всех космических объектов. Плотные и холодные формы межзвездного газа, содержащие водород, гелий и минимальные объемы тяжелых элементов (железо, алюминий, никель, титан, кальций), находятся в молекулярном состоянии, соединяясь в обширные облачные поля. Обычно в составе межзвездного газа элементы распределены следующим образом: водород – 89%, гелий – 9%, углерод, кислород, азот – около 0,2-0,3%.


Газопылевое облако IRAS 20324+4057 из межзвездного газа и пыли длиной в 1 световой год, похожее на головастика, в котором скрывается растущая звезда

Облака межзвездного газа могут не только упорядоченно вращаться вокруг галактических центров, но и обладать нестабильным ускорением. В течение нескольких десятков миллионов лет они догоняют друг друга и сталкиваются, образуя комплексы из пыли и газа.

В нашей Галактике основной объем межзвездного газа сосредоточен в спиральных рукавах, один из коридоров которых расположен рядом с Солнечной системой.

Скорость движения Солнца в Галактике относительно межзвездного газа: 22-25 км/сек.

Межзвездный газ в ближайших окрестностях Солнца имеет значительную собственную скорость (20-25 км/с) относительно ближайших звезд. Под его влиянием апекс движения Солнца смещается в сторону созвездия Змееносца (= 258°, = -17°). Разница в направлении движения около 45°.

4. Скорость движения Солнца в Галактике относительно центра Галактики.

В трех рассмотренных выше пунктах речь идет о так называемой пекулярной, относительной скорости движения Солнца. Иными словами, пекулярная скорость - это скорость относительно космической системы отсчета.

Но Солнце, ближайшие к нему звезды, местное межзвездное облако все вместе участвуют в более масштабном движении – движении вокруг центра Галактики.

И здесь речь идет уже о совсем других скоростях.

Скорость движения Солнца вокруг центра Галактики огромна по земным меркам - 200-220 км/сек (около 850 000 км/час) или больше 40 а.е. / год.

Точную скорость Солнца вокруг центра Галактики определить невозможно, ведь центр Галактики скрыт от нас за плотными облаками межзвездной пыли. Однако все новые и новые открытия в этой области все уменьшают расчетную скорость нашего солнца. Еще совсем недавно говорили о 230-240 км/сек.

Солнечная система в Галактике движется по направлению к созвездию Лебедя.

Движение Солнца в Галактике происходит перпендикулярно направлению на центр Галактики. Отсюда галактические координаты апекса: l = 90°, b = 0° или в более привычных экваториальных координатах - = 318°, = 48°. Поскольку это движение обращения, апекс смещается и совершает полный круг за "галактический год", примерно 250 миллионов лет; угловая его скорость ~5" / 1000 лет, т.е. координаты апекса смещаются на полтора градуса за миллион лет.

Нашей Земле от роду около 30 таких «галактических лет».


Скорость движения Солнца в Галактике относительно центра Галактики

Кстати, интересный факт на тему скорости движения Солнца в Галактике:

Скорость вращения Солнца вокруг центра Галактики почти совпадает со скоростью волны уплотнения, образующей спиральный рукав. Такая ситуация является нетипичной для Галактики в целом: спиральные рукава вращаются с постоянной угловой скоростью, как спицы в колесах, а движение звёзд происходит с другой закономерностью, поэтому почти всё звёздное население диска то попадает внутрь спиральных рукавов, то выпадает из них. Единственное место, где скорости звёзд и спиральных рукавов совпадают - это так называемый коротационный круг, и именно на нём расположено Солнце.

Для Земли это обстоятельство чрезвычайно важно, поскольку в спиральных рукавах происходят бурные процессы, образующие мощное излучение, губительное для всего живого. И никакая атмосфера не смогла бы от него защитить. Но наша планета существует в сравнительно спокойном месте Галактики и в течение сотен миллионов (или даже миллиардов) лет не подвергалась воздействию этих космических катаклизмов. Возможно, именно поэтому на Земле смогла зародиться и сохраниться жизнь.

Скорость движения Галактики во Вселенной.

Скорость движения Галактики во Вселенной принято рассматривать относительно разных систем отсчета:

Относительно Местной группы галактик (скорость сближения с галактикой Андромеда).

Относительно удаленных галактик и скоплений галактик (скорость движения Галактики в составе местной группы галактик к созвездию Девы).

Относительно реликтового излучения (скорость движения всех галактик в ближайшей к нам части Вселенной к Великому Аттрактору – скоплению огромных сверхгалактик).

Остановимся подробнее на каждом из пунктов.

1. Скорость движения Галактики Млечный Путь к Андромеде.

Наша Галактика Млечный Путь также не стоит на месте, а гравитационно притягивается и сближается с галактикой Андромеда со скоростью 100-150 км/с. Основной компонент скорости сближения галактик принадлежит Млечному Пути.

Поперечная составляющая движения точно не известна, и беспокойства о столкновении преждевременны. Дополнительный вклад в это движение вносит и массивная галактика M33, находящаяся примерно в том же направлении, что и галактика Андромеды. В целом скорость движения нашей Галактики относительно барицентра Местной группы галактик около 100 км / сек примерно в направлении Андромеда/Ящерица (l = 100, b = -4, = 333, = 52), однако эти данные еще весьма приблизительны. Это весьма скромная относительная скорость: Галактика смещается на собственный диаметр за две-три сотни миллионов лет или, очень примерно, за галактический год.

2. Скорость движения Галактики Млечный Путь к скоплению Девы.

В свою очередь, группа галактик, в которую входит и наш Млечный путь, как некое единое целое, движется к большому скоплению Девы со скоростью 400 км/с. Это движение также обусловлено гравитационными силами и осуществляется относительно удаленных скоплений галактик.


Скорость движения Галактики Млечный Путь к скоплению Девы

3. Скорость движения Галактики во Вселенной. На Великий Аттрактор!

Реликтовое излучение.

Согласно теории Большого Взрыва, ранняя Вселенная представляла собой горячую плазму, состоящую из электронов, барионов и постоянно излучающихся, поглощающихся и вновь переизлучающихся фотонов.

По мере расширения Вселенной плазма остывала и на определённом этапе замедлившиеся электроны получили возможность соединяться с замедлившимися протонами (ядрами водорода) и альфа-частицами (ядрами гелия), образуя атомы (этот процесс называется рекомбинацией).

Это случилось при температуре плазмы около 3000 К и примерном возрасте Вселенной 400 000 лет. Свободного пространства между частицами стало больше, заряженных частиц стало меньше, фотоны перестали так часто рассеиваться и теперь могли свободно перемещаться в пространстве, практически не взаимодействуя с веществом.

Те фотоны, которые были в то время излучены плазмой в сторону будущего расположения Земли, до сих пор достигают нашей планеты через пространство продолжающей расширяться вселенной. Эти фотоны составляют реликтовое излучение, представляющее собой равномерно заполняющее Вселенную тепловое излучение.

Существование реликтового излучения было предсказано теоретически Г. Гамовым в рамках теории Большого взрыва. Экспериментально его существование было подтверждено в 1965 году.

Скорость движения Галактики относительно реликтового излучения.

Позже началось изучение скорости движения Галактик относительно реликтового излучения. Определяется это движение измерением неравномерности температуры реликтового излучения в разных направлениях.

Температура излучения имеет максимум в направлении движения и минимум в противоположном направлении. Степень отклонения распределения температуры от изотропного (2,7 К) зависит от величины скорости. Из анализа наблюдательных данных следует, что Солнце движется относительно реликтового излучения со скоростью 400 км/с в направлении =11,6, =-12 .

Такие измерения показали также и другую важную вещь: все галактики в ближайшей к нам части Вселенной, включая не только нашу Местную группу , но и скопление Девы и другие скопления, движутся относительно фонового реликтового излучения с неожиданно большой скоростью.

Для Местной группы галактик она составляет 600-650 км / сек с апексом в созвездии Гидра (=166, =-27). Выглядит это так, что где-то в глубинах Вселенной существует огромный кластер многих сверхскоплений, притягивающий материю нашей части Вселенной. Этот кластер был назван Великим Аттрактором - от английского слова «attract» - притягивать.

Поскольку галактики, входящие в состав Великого Аттрактора, скрыты межзвездной пылью, входящей в состав Млечного Пути, картографирование Аттрактора удалось выполнить только в последние годы с помощью радиотелескопов.

Великий Аттрактор находится на пересечении нескольких сверхскоплений галактик. Средняя плотность вещества в этом районе ненамного больше средней плотности Вселенной. Но за счет гигантских размеров его масса оказывается настолько велика и сила притяжения столь огромна, что не только наша звездная система, но и другие галактики и их скопления поблизости движутся в направлении Великого Аттрактора, формируя огромный поток галактик.


Скорость движения Галактики во Вселенной. На Великий Аттрактор!

Итак, подведем итоги.

Скорость движения Солнца в Галактике и Галактики во Вселенной. Сводная таблица.

Иерархия движений, в которых принимает участие наша планета:

Вращение Земли вокруг Солнца;

Вращение вместе с Солнцем вокруг центра нашей Галактики;

Движение относительно центра Местной группы галактик вместе со всей Галактикой под действием гравитационного притяжения созвездия Андромеда (галактики М31);

Движение к скоплению галактик в созвездии Девы;

Движение к Великому Аттрактору.

Скорость движения Солнца в Галактике и скорость движения Галактики Млечный Путь во Вселенной. Сводная таблица.

Сложно себе представить, а еще сложнее рассчитать, как далеко мы перемещаемся каждую секунду. Расстояния эти - огромны, а погрешности в таких расчетах пока еще достаточно велики. Вот какими данными располагает наука на сегодняшний день.

Тем временем, наша местная группа мчится по направлению к центру скопления Девы (Virgo Cluster) на скорости 150 миллионов километров в час.

Млечный Путь и соседка Андромеда, наряду с 30 более мелкими галактиками, а также тысячи галактик Девы, все это притягивается Великим аттрактором. Учитывая скорости при таких масштабах, невидимая масса, занимающая пустоты между галактиками и кластерами галактик, должна по меньшей мере в десять раз превышать видимую материю.

Даже при всем этом, добавив этот невидимый материал к видимому материалу и получив среднюю массу вселенной, мы получим всего 10-30 % от критической плотности, которая необходима, чтобы «закрыть» вселенную. Этот феномен позволяет предположить, что вселенная «открыта». Космологи продолжают спорить на эту тему точно так же, как пытаются , или «темной материи».

Считается, что определяет структуру Вселенной на огромных масштабах. Темная материя гравитационно взаимодействует с нормальным веществом и именно это позволяет астрономам наблюдать формирование длинных тонких стен супергалактических кластеров.

Недавние измерения (с помощью телескопов и космических зондов) распределения массы в M31, крупнейшей галактике в окрестностях Млечного Пути, и других галактиках привели к признанию того факта, что галактики наполнены темной материей, и показали, что таинственная сила - - заполняет вакуум пустого пространства, ускоряя расширение Вселенной.

Теперь астрономы понимают, что окончательная судьба вселенной неразрывно связана с наличием темной энергии и темной материи. Современная стандартная модель для космологии предполагает, что во вселенной 70 % темной энергии, 25 % темной материи и всего 5 % нормальной материи.

Мы не знаем, что такое темная энергия и почему она существует. С другой стороны, теория частиц подсказывает, что на микроскопическом уровне даже идеальный вакуум пузырится квантовыми частицами, которые являются естественным источником темной энергии. Но элементарные расчеты показывают, что темная энергия, которая вырабатывается из вакуума, имеет значение в 10 120 раз больше, чем то, которое мы наблюдаем. Некоторые неизвестные физические процессы должны устранять большинство, но не всю, энергию вакуума, оставляя достаточно для ускорения расширения вселенной.

Новой теории элементарных частиц придется объяснить этот физический процесс. Новые теории «темных аттракторов» прикрываются так называемым принципом Коперника, который говорит о том, что нет ничего удивительного в том, что мы, наблюдатели, предполагаем, что вселенная неоднородна. Такие альтернативные теории объясняют наблюдаемое ускоренное расширение Вселенной без привлечения темной энергии, а вместо этого предполагают, что мы недалеко от центра пустоты, за которой более плотный «темный» аттрактор тянет нас к себе.

В статье, опубликованной в Physical Review Letters , Пенгжи Чжан из Шанхайской астрономической обсерватории и Альберт Стеббинс на выставке лаборатории Ферми показали, что популярная модель пустоты и многие другие вполне могут заменить темную энергию, не вступая в противоречия с наблюдениями телескопов.

Опросы показывают, что вселенная однородна, по меньшей мере, на масштабах до гигапарсека. Чжан и Стеббинс утверждают, что если большие масштабы неоднородности существуют, они должны быть обнаружены как температурный сдвиг в космическом микроволновом фоне реликтовых фотонов, образовавшихся спустя 400 000 лет после Большого Взрыва. Это происходит из-за электронно-фотонного рассеяния (обратного Комптоновскому).

Сосредоточив внимание на модели пустоты «пузырь Хаббла», ученые показали, что в таком сценарии некоторые области вселенной будут расширяться быстрее, чем другие, в результате чего температурный сдвиг будет больше, чем ожидается. Но телескопы, изучающие реликтовое излучение, не видят такого большого сдвига.

Что ж, как говорил Карл Саган, «экстраординарные заявления требуют экстраординарных доказательств».

Гравитация может не только притягивать, но и отталкивать - как вам такое заявление? Причем не в какой-нибудь новой математической теории, а на самом деле - Большой Отталкиватель, как его назвала группа ученых, ответственен за половину скорости, с которой наша Галактика движется в космосе. Звучит фантастически, не так ли? Давайте разбираться.

Во-первых, давайте оглянемся по сторонам и познакомимся с нашими соседями во Вселенной. За последние несколько десятков лет мы узнали очень многое, и слово «космография» сегодня - это не термин из фантастических романов Стругацких, а один из разделов современной астрофизики, занимающийся составлением карт доступной нам части Вселенной. Ближайшая соседка нашего Млечного Пути - это галактика Андромеда, которую можно увидеть на ночном небе и невооруженным глазом. А вот разглядеть еще несколько десятков компаньонов не получится - карликовые галактики , которые вращаются вокруг нас и Андромеды, очень тусклые, и астрофизики до сих по не уверены, что нашли их все. Тем не менее, все эти галактики (в том числе и не открытые), а также галактика Треугольника и галактика NGC 300 входят в Местную группу галактик . Сейчас в Местной группе 54 известных галактики, большая часть из которых - это уже упоминавшиеся тусклые карликовые галактики, и ее размеры превышают 10 миллионов световых лет. Местная группа вместе с еще примерно 100 скоплениями галактик входит в сверхскопление Девы , размерами больше 110 миллионов световых лет.

В 2014 году группа астрофизиков под руководством Брента Талли из Гавайского университета выяснила, что само это сверхскопление, состоящее из 30 тысяч галактик, является составной частью еще бо льшей структуры - сверхскопления Ланиакея , в котором содержится уже более 100 тысяч галактик. Осталось сделать последний шаг - Ланиакея вместе со сверхскоплением Персея-Рыб входит в комплекс сверхскоплений Рыб-Кита , которое одновременно является галактической нитью, то есть составной частью крупномасштабной структуры Вселенной .

Наблюдения и компьютерные симуляции подтверждают, что галактики и скопления не хаотически разбросаны во Вселенной, а составляют сложную губкообразную структуру, где есть филаменты-нити , узлы и пустоты, также известные как войды . Вселенная, как почти сто лет назад показал Эдвин Хаббл, расширяется, и сверхскопления - это самые крупные образования, которые удерживаются гравитацией от разбегания. То есть, если упростить, то филаменты разбегаются друг от друга из-за воздействия темной энергии, а движение объектов внутри них в большей степени обусловлено силами гравитационного притяжения.

И теперь, зная, что вокруг нас столько галактик и скоплений, которые притягивают друг друга так сильно, что даже перебарывают расширение Вселенной, пора задать ключевой вопрос: а куда все это летит? Именно на него и пытается ответить группа ученых вместе с Иегуди Хоффманом из Еврейского университета в Иерусалиме и уже упоминавшимся Брентом Талли . Их совместная , вышедшая в Nature , основана на данных проекта Cosmicflows-2 , который измерил расстояния и скорости более 8000 близлежащих галактик. Этот проект был запущен в 2013 году все тем же Брентом Талли вместе с коллегами, в том числе Игорем Караченцевым , одним из самых высокоцитируемых российских астрофизиков-наблюдателей.

Трехмерную карту локальной Вселенной (с русским переводом), составленную учеными, можно посмотреть на этом видео .

Трехмерная проекция участка местной Вселенной. Слева синими линиями обозначено поле скоростей всех известных галактик ближайших сверхскоплений - они очевидно двигаются в сторону Аттрактора Шэпли. Справа красным показано поле анти-скоростей (обратные значения поля скоростей). Они сходятся в точке, откуда их «выталкивает» отсутствие гравитации в этой области Вселенной.

Yehuda Hoffman et al 2016


Итак, куда все это летит? Для ответа нужна точная карта скоростей для всех массивных тел в ближней части Вселенной. К сожалению, для ее построения данных Cosmicflows-2 недостаточно - несмотря на то, что это лучшее, что есть у человечества, они неполны, неоднородны по качеству и имеют большие погрешности. Профессор Хоффман применил к известным данным винеровское оценивание - пришедший из радиоэлектроники статистический прием отделения полезного сигнала от шума. Это оценивание позволяет ввести основную модель поведения системы (в нашем случае - это Стандартная космологическая модель), которая будет определять общее поведение всех элементов в отсутствие дополнительных сигналов. То есть движение конкретной галактики будет определяться общими положениями Стандартной модели, если для нее данных недостаточно, и данными измерений, если таковые есть.

Полученные результаты подтвердили то, что нам уже было известно - вся Местная группа галактик летит в космосе в сторону Великого аттрактора , гравитационной аномалии в центре Ланиакеи. И сам Великий аттрактор, несмотря на название, не такой уж и великий - его притягивает намного более массивное сверхскопление Шэпли , к которому мы и направляемся со скоростью 660 километров в секунду. Проблемы начались, когда астрофизики решили сравнить измеренную скорость Местной группы с расчетной, которая выводится из массы сверхскопления Шэпли. Оказалось, что несмотря на колоссальную массу (10 тысяч масс нашей Галактики), оно не могло бы разогнать нас до такой скорости. Более того, построив карту анти-скоростей (карту векторов, которые направлены в сторону, обратную векторам скоростей), ученые нашли область, которая как будто отталкивает нас от себя. Причем расположена она ровно на противоположной стороне от сверхскопления Шэпли и отталкивает именно с той скоростью, чтобы в сумме дать искомые 660 километров в секунду.

Вся притягивательно-отталкивающая конструкция напоминает формой электрический диполь , в котором силовые линии идут от одного заряда к другому.


Классический электрический диполь из учебника физики.

Wikimedia commons

Но ведь это противоречит всей физике, которую мы знаем - антигравитации быть не может! Что же это за чудо такое? Для ответа давайте представим, что вас окружили и тянут в разные стороны пятеро друзей - если они это делают с одинаковой силой, то вы останетесь на месте, как будто вас никто не тянет. Однако, если один из них, стоящий справа, вас отпустит, то вы будете смещаться влево - в противоположную от него сторону. Точно так же вы будете смещаться влево, если к пяти тянущим друзьям присоединится шестой, который встанет справа и начнет не тянуть вас, а толкать.

Относительно чего мы движемся в космосе.

Отдельно нужно разобраться в том, как определяется скорость в космосе. Есть несколько разных способов, но один из самых точных и часто применимых - это использование эффекта Доплера, то есть измерение смещения спектральных линий. Одна из самых известных линий водорода, Бальмер-альфа, видна в лаборатории как ярко-красное излучение на длине волны 656,28 нанометра. А в галактике Андромеды ее длина уже 655,23 нанометра - более короткая длина волны означает, что галактика движется к нам. Галактика Андромеды - это исключение. Большинство других галактик летит от нас - и линии водорода в них будут пойманы на более длинных волнах: 658, 670, 785 нанометров - чем дальше от нас, тем быстрее летят галактики и тем больше будет смещение спектральных линий в область более длинных волн (это и называется красным смещением). Однако у этого метода есть серьезное ограничение - он может измерить нашу скорость относительно другой галактики (или скорость галактики относительно нас), но как измерить, куда мы летим вместе с той самой галактикой (и летим ли куда-нибудь)? Это как ехать на машине со сломанным спидометром и без карты - какие-то машины обгоняем мы, какие-то машины обгоняют нас, но куда все едут и какова наша скорость относительно дороги? В космосе подобной дороги, то есть абсолютной системы координат, нет. В космосе вообще нет ничего неподвижного, к чему можно было бы привязать измерения.

Ничего, кроме света.

Именно так - свет, точнее тепловое излучение, появившееся сразу после Большого Взрыва и равномерно (это важно) распространившееся по Вселенной. Мы называем его реликтовым излучением. Из-за расширения Вселенной температура реликтового излучения постоянно уменьшается и сейчас мы живем в такое время, что она равна 2,73 кельвина. Однородность - или как говорят физики изотропность - реликтового излучения означает, что в какую сторону неба ни направь телескоп - температура космоса должна быть 2,73 кельвина. Но это если мы относительно реликтового излучения не двигаемся. Однако измерения, проведенные в том числе телескопами Планк и COBE, показали, что температура половины неба чуть меньше этой величины, а второй половины - чуть больше. Это не ошибки измерений, в влияние все того же эффекта Доплера - мы смещаемся относительно реликтового излучения, и поэтому часть реликтового излучения, навстречу которой мы летим со скоростью 660 километров в секунду, кажется нам чуть теплее.


Карта реликтового излучения, полученная космической обсерваторией COBE. Дипольное распределение температуры доказывает наше движение в пространстве - мы удаляемся от более холодной области (синие цвета) в сторону более теплой области (желтые и красные цвета на этой проекции).

DMR, COBE, NASA, Four-Year Sky Map


Во Вселенной роль тянущих на себя друзей играют галактики и скопления галактик. Если бы они были равномерно распределены по Вселенной, то мы никуда бы не двигались - они тянули бы нас с одинаковой силой в разные стороны. А теперь представьте, что с одной стороны от нас никаких галактик нет. Поскольку все остальные галактики остались на месте, то мы будем удаляться от этой пустоты, как будто она нас отталкивает. Именно это и происходит с областью, которую ученые окрестили Великим Отталкивателем, или Великим Репеллером - несколько кубических мегапарсек пространства необычайно бедно заселены галактиками и не могут компенсировать гравитационное притяжение, которое оказывают на нас все эти скопления и сверхскопления с остальных сторон. Насколько именно это пространство бедно галактиками- еще предстоит выяснить. Дело в том, что Великий Репеллер очень неудачно расположен - он находится в зоне избегания (да, в астрофизике очень много красивых непонятных названий), то есть области пространства, закрытой от нас нашей собственной галактикой, Млечным Путем.


Карта скоростей местной Вселенной размером примерно 2 миллиарда световых лет. Желтая стрелка по центру выходит из Местной группы галактик и указывает скорость ее движения примерно в направлении аттрактора Шэпли и точно в противоположную сторону от репеллера (обозначен желтым и серым контуром в правой и верхней области).

Yehuda Hoffman et al 2016

Огромное количество звезд и туманностей, а в особенности газ и пыль мешают свету от далеких галактик, расположенных по ту сторону галактического диска, долетать до нас. Лишь недавние наблюдения рентгеновскими и радиотелескопами, которые могут регистрировать излучение, свободно проходящее сквозь газ и пыль, позволили составить более-менее полный список галактик в зоне избегания. В области Великого Отталкивателя действительно оказалось очень мало галактик, так что, похоже, что это кандидат на звание войда - гигантской пустой области космической структуры Вселенной.

В заключение надо сказать, что как бы ни была высока скорость нашего полета сквозь космос, достичь ни Аттрактора Шэпли, ни Великого Аттрактора нам не удастся, - по расчетам ученых, это займет время, в тысячи раз превышающее возраст Вселенной, так что какой бы точной ни становилась наука космография, ее карты еще долго не будут полезными любителям путешествий.

Марат Мусин

Вы сидите, стоите или лежите, читая эту статью, и не ощущаете, что Земля вращается вокруг своей оси с бешеной скоростью - примерно 1 700 км/ч на экваторе. Однако скорость вращения не кажется такой уж быстрой, если перевести ее в км/с. Получится 0,5 км/с - едва заметная вспышка на радаре, в сравнении с другими окружающими нас скоростями.

Так же, как и другие планеты Солнечной системы, Земля вращается вокруг Солнца. И чтобы удерживаться на своей орбите, она двигается со скоростью 30 км/с. Венера и Меркурий, находящиеся ближе к Солнцу, двигаются быстрее, Марс, орбита которого проходит за орбитой Земли, движется намного медленнее нее.

Но даже Солнце не стоит на одном месте. Наша галактика Млечный Путь - огромная, массивная и тоже подвижная! Все звезды, планеты, газовые облака, частицы пыли, черные дыры, темная материя - все это движется относительно общего центра масс.

По предположениям ученых, Солнце находится на расстоянии 25 000 световых лет от центра нашей галактики и двигается по эллиптической орбите, совершая полный оборот каждые 220–250 млн лет. Получается, что скорость Солнца - около 200–220 км/с, что в сотни раз выше скорости движения Земли вокруг оси и в десятки раз выше скорости ее движения вокруг Солнца. Вот так выглядит движение нашей Солнечной системы.

Стационарна ли галактика? Снова нет. Гигантские космические объекты обладают большой массой, а следовательно, создают сильные гравитационные поля. Дайте Вселенной немного времени (а оно у нас было - примерно 13,8 миллиардов лет), и все начнет двигаться в направлении наибольшего притяжения. Вот почему Вселенная не однородна, а представляет собой галактики и группы галактик.

Что это означает для нас?

Это означает, что Млечный Путь тянут к себе другие галактики и группы галактик, расположенные поблизости. Это означает, что доминируют в этом процессе массивные объекты. И это означает, что не только наша галактика, но и все окружающие испытывают влияние этих «тягачей». Мы все ближе подходим к пониманию того, что происходит с нами в космическом пространстве, но нам все еще не хватает фактов, например:

  • каковы были начальные условия, при которых зародилась Вселенная;
  • как различные массы в галактике двигаются и изменяются со временем;
  • как образовывался Млечный Путь и окружающие галактики и скопления;
  • и как это происходит сейчас.

Однако есть трюк, который поможет нам разобраться.

Вселенную наполняет реликтовое излучение с температурой 2,725 К, которое сохранилось со времен Большого Взрыва. Кое-где есть крошечные отклонения - около 100 мкК, но общий температурный фон постоянен.

Это происходит потому, что Вселенная образовалась в результате Большого Взрыва 13,8 миллиардов лет назад и до сих пор расширяется и охлаждается.

Через 380 000 лет после Большого Взрыва Вселенная охладилась до такой температуры, что стало возможным образование атомов водорода. До этого фотоны постоянно взаимодействовали с остальными частицами плазмы: сталкивались с ними и обменивались энергией. По мере остывания Вселенной заряженных частиц стало меньше, а пространства между ними - больше. Фотоны смогли свободно перемещаться в пространстве. Реликтовое излучение - это фотоны, которые были излучены плазмой в сторону будущего расположения Земли, но избежали рассеяния, так как рекомбинация уже началась. Они достигают Землю сквозь пространство Вселенной, которая продолжает расширяться.

Вы сами можете «увидеть» это излучение. Помехи, которые возникают на пустом канале телевизора, если вы используете простую антенну, похожую на заячьи уши, на 1% вызваны реликтовым излучением.

И все-таки температура реликтового фона не одинакова во всех направлениях. По результатам исследований миссии Planck, температура несколько различается в противоположных полушариях небесной сферы: она немного выше на участках неба южнее эклиптики - около 2,728 K, и ниже в другой половине - около 2,722 K.


Карта микроволнового фона, сделанная при помощи телескопа Planck.

Эта разница почти в 100 раз больше остальных наблюдаемых колебаний температуры реликтового фона, и это вводит в заблуждение. Почему так происходит? Ответ очевиден - эта разница происходит не из-за флуктуаций реликтового излучения, она появляется, потому что есть движение!

Когда вы приближаетесь к источнику света или он приближается к вам, спектральные линии в спектре источника смещаются в сторону коротких волн (фиолетовое смещение), когда отдаляетесь от него или он от вас - спектральные линии смещаются в сторону длинных волн (красное смещение).

Реликтовое излучение не может быть более или менее энергичным, значит, мы движемся сквозь пространство. Эффект Доплера помогает определить, что наша Солнечная система движется относительно реликтового излучения со скоростью 368 ± 2 км/с, а местная группа галактик, включающая Млечный Путь, галактику Андромеды и галактику Треугольника, движется со скоростью 627 ± 22 км/с относительно реликтового излучения. Это так называемые пекулярные скорости галактик, которые составляют несколько сотен км/с. Помимо них существуют еще космологические скорости, обусловленные расширением Вселенной и рассчитываемые по закону Хаббла.

Благодаря остаточному излучению от Большого Взрыва мы можем наблюдать, что во Вселенной постоянно все движется и изменяется. И наша галактика - лишь часть этого процесса.

error: