Примеры относительной траектории движения тела. Что такое относительность движения. Изменение траектории в разных системах отсчета

Относительность механического движения

Движение в физике – это перемещение тела в пространстве, которое обладает своими специфическими особенностями.

Механическое движение можно представить в виде изменения положения конкретного материального тела в пространстве. Все изменения должны происходить относительно друг друга с течением времени.

Типы механического движения

Механическое движение бывает трех основных типов:

  • прямолинейное движение;
  • равномерное движение;
  • криволинейное движение.

Для решения задач в физике принято использовать допущения в виде представления объекта материальной точкой. Это имеет смысл в тех случаях, когда форму, размер и тело можно не учитывать в его истинных параметрах и выбрать изучаемый объект в виде определенной точки.

Существует несколько основных условий, когда применяется в решении задачи метод внедрения материальной точки:

  • в случаях, если размеры тела чрезвычайно малы по отношению к расстоянию, которое оно проходит;
  • в случаях, если тело двигается поступательно.

Поступательное движение возникает в момент, когда все точки материального тела движутся одинаково. Также тело будет двигаться поступательным образом, когда через две точки этого объекта проведут прямую, и она должна смещаться параллельно первоначальному месторасположению.

При начале изучения относительности механического движения вводят понятие системы отсчета. Она образуется вместе с телом отсчета и системой координат, включая часы для отсчета времени движения. Все элементы составляют единую систему отсчета.

Система отсчета

Замечание 2

Телом отсчета считается такое тело, относительно которого определяется положение иных тел, находящихся в движении.

Если не задать дополнительные данные в решение задачи по просчету механического движения, то его нельзя будет заметить, так как все движения тела высчитываются относительно взаимодействия с другими физическими телами.

Ученые для понимания явления ввели дополнительные понятия, в том числе:

  • прямолинейное равномерное движение;
  • скорость перемещения тела.

С их помощью исследователи пытались выяснить, каким образом тело двигалось в пространстве. В частности, можно было определить вид движения тела относительно наблюдателей, которые имели разную скорость. Выяснилось, что результат наблюдения зависит от соотношения скоростей движения тела и наблюдателей относительно друг друга. Во всех расчетах использовались формулы классической механики.

Существует несколько основных систем отсчета, которые применяются при решении задач:

  • подвижные;
  • неподвижные;
  • инерциальные.

При рассмотрении движения относительно подвижной системы отсчета применяют классический закон сложения скоростей. Скорость тела относительно неподвижной системы отсчета будет равна векторной сумме скорости тела относительно подвижной системы отсчета, а также скорости подвижной системы отсчета относительно неподвижной.

$\overline{v} = \overline{v_{0}} + \overline{v_{s}}$, где:

  • $\overline{v}$ - скорость тела по неподвижной системе отсчета,
  • $\overline{v_{0}}$ - это скорость тела по подвижной системе отсчета,
  • $\overline{v_{s}}$ - это скорость дополнительного фактора, который влияет на определение скорости.

Относительность механического движения заключается в относительности скоростей, с которыми перемещаются тела. Скорости тел относительно различных систем отсчета также будут отличаться. Например, скорость человека, находящегося в поезде или самолете будет отличаться в зависимости от того, в какой системе отсчета определяют эти скорости.

Скорости различаются по направлению и величине. Определение конкретного объекта исследования при механическом движении играет важнейшую роль при высчитывании параметров движения материальной точки. Скорости могут определяться в системе отсчета, которая связана с движущимся транспортом, а может быть в относительной зависимости от неподвижной Земли или ее вращения на орбите в космосе.

Такую ситуацию можно смоделировать на простом примере. Двигающийся по железной дороге поезд будет совершать механические движения относительно другого поезда, который двигается на параллельных путях или относительно Земли. Решение задачи зависит напрямую от выбранной системы отсчета. В разных системах отсчета будут различные траектории движения. При механическом движении траектория также является относительной. От выбранной системы отсчета зависит путь, который был пройден телом. При механическом движении путь является относительным.

Развитие относительности механического движения

Также согласно закону инерции, стали формировать инерциальные системы отсчета.

Процесс осознания относительности механического движения занял немалый исторический промежуток времени. Если сначала долгое время считалась приемлемой модель геоцентрической системы мира (Земля – центр Вселенной), то движение тел в разных системах отсчета стали рассматривать во времена известного ученого Николая Коперника, который сформировал гелиоцентрическую модель мира. Согласно ей, планеты Солнечной системы совершают вращение вокруг Солнца, а также совершают вращения вокруг собственной оси.

Поменялась структура системы отсчета, что привело позже к построению прогрессивной гелиоцентрической системы. Эта модель сегодня позволяет решать различные научные цели и задачи, в том числе в сфере прикладной астрономии, когда просчитывается траектории движения звезд, планет, галактик, исходя из метода относительности.

В начале 20 века была сформулирована теория относительности, которая также базируется на основополагающих принципах механического движения и взаимодействия тел.

Все формулы, которые применяются для высчитывания механических движений тел и определения их скорости, имеют смысл на скоростях меньше скорости света в вакууме.

Относительность движения состоит в том, что при изучении движения в системах отсчета, движущихся равномерно и прямолинейно относительно принятой неподвижной системы отсчета, все расчеты можно проводить по тем же формулам и уравнениям, как если бы движение подвижной системы отсчета относительно неподвижной отсутствовало.

Относительность движения: основные положения

Система отсчёта - это совокупность тела отсчёта, системы координат и времени, связанных с телом, по отношению к которому изучается движение (или равновесие) каких-нибудь других материальных точек или тел. Любое движение является относительным, и движение тела следует рассматривать лишь по отношению к какому-либо другому телу (телу отсчёта) или системе тел. Нельзя указать, например, как движется Луна вообще, можно лишь определить её движение по отношению к Земле или Солнцу и звёздам и т. д.

Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Например, в декартовых координатах х, у, z движение точки определяется уравнениями Х = f1(t), у = f2(t), Z = f3(t), называются уравнениями движения.

Тело отсчета - тело, относительно которого задается система отсчета.

Система отсчёта - сопоставленная с континуумом, натянутым на реальные или воображаемые базовые тела отсчёта. К базовым (образующим) телам системы отсчёта естественно предъявить следующие два требования:

1. Базовые тела должны быть неподвижны друг относительно друга. Это проверяется, например, по отсутствию допплер-эффекта при обмене радиосигналами между ними.

2. Базовые тела должны двигаться с одинаковым ускорением, то есть иметь одинаковые показатели установленных на них акселерометров.

Движущиеся тела изменяют свое положение относительно других тел. Положение автомобиля, мчащегося по шоссе изменяется относительно указателей на километровых столбах, положение корабля, плывущего в море недалеко от берега, меняется относительно звезд и береговой линии, а о движении самолета, летящего над землей, можно судить по изменению его положения относительно поверхности Земли. Механическое движение - это процесс изменения положения тел в пространстве с течением времени. Можно показать, что одно и то же тело может по-разному перемещаться относительно других тел.

Таким образом говорить о том, что какое-то тело движется, можно лишь тогда, когда ясно, относительно какого другого тела - тела отсчета изменилось его положение.

Относительность движения: пример из жизни

Представьте себе электричку. Она едет тихонько по рельсам, развозя пассажиров по дачам. И вдруг сидящий в последнем вагоне хулиган и тунеядец Сидоров замечает, что на станции «Сады» в вагон входят контролеры. Билет, естественно, Сидоров не купил, а штраф платить ему хочется еще меньше.

И вот, чтобы его не поймали, он быстренько совершает перемещение при прямолинейном равномерном движении в другой вагон. Контролеры, проверив билеты у всех пассажиров, движутся в том же направлении. Сидоров опять переходит в следующий вагон и так далее. И вот, когда он достигает первого вагона и идти дальше уже некуда, оказывается, что поезд как раз доехал до нужной ему станции «Огороды», и счастливый Сидоров выходит, радуясь тому, что проехал зайцем и не попался.

Что мы можем извлечь из этой остросюжетной истории? Мы можем, без сомнения, порадоваться за Сидорова, а можем, кроме того, обнаружить еще один небезынтересный факт.

В то время, как поезд за пять минут проехал пять километров от станции «Сады» до станции «Огороды», заяц Сидоров за это же время преодолел такое же расстояние плюс расстояние, равное длине поезда, в котором он ехал, то есть около пяти тысяч двухсот метров за те же пять минут. Получается, что Сидоров двигался быстрее электрички. Впрочем, такую же скорость развили и следующие за ним по пятам контролеры. Учитывая, что скорость поезда была около 60 км/ч впору выдать им всем несколько олимпийских медалей.

Однако, конечно же, никто такой глупостью заниматься не будет, потому что все понимают, что невероятная скорость Сидорова была развита им только лишь относительно неподвижных станций, рельсов и огородов, и обусловлена эта скорость была передвижением поезда, а вовсе не невероятными способностями Сидорова. Относительно же поезда Сидоров двигался вовсе и не быстро и не дотягивает не то что до олимпийской медали, но даже до ленточки от нее. Вот тут-то мы и сталкиваемся с таким понятием как относительность движения.

Предлагаю игру: выбрать предмет в комнате и описать его местонахождение. Выполнить это так, чтобы угадывающий не смог ошибиться. Вышло? А что выйдет из описания, если другие тела не использовать? Останутся выражения: "слева от...", "над..." и подобное. Положение тела можно задать толькоотносительно какого-нибудь другого тела .

Местонахождение клада: "Стань у восточного угла крайнего дома села лицом на север и, пройдя 120 шагов, повернись лицом на восток и пройди 200 шагов. В этом месте вырой яму в 10 локтей и найдешь 100 слитков золота". Клад найти невозможно, иначе его давно откопали бы. Почему? Тело, относительно которого совершается описание не определено, неизвестно в каком селе находится тот самый дом. Необходимо точно определиться с телом, которое возьмется за основу нашего будущего описания. Такое тело в физике называетсятелом отсчета . Его можно выбрать произвольно. Например, попробуйте выбрать два различных тела отсчета и относительно их описать местонахождение компьютера в комнате. Выйдет два непохожих друг на друга описания.

Система координат

Рассмотрим картинку. Где находится дерево, относительно велосипедиста I, велосипедиста II и нас, смотрящих на монитор?

Относительно тела отсчета - велосипедист I - дерево находится справа, относительно тела отсчета - велосипедист II - дерево находится слева, относительно нас оно впереди. Одно и то же тело - дерево, находящееся постоянно в одном и том же месте, одновременно и "слева", и "справа" и "впереди". Проблема не только в том, что выбраны различные тела отсчета. Рассмотрим его расположение относительно велосипедиста I.


На этом рисунке деревосправа от велосипедиста I


На этом рисунке деревослева от велосипедиста I

Дерево и велосипедист не меняли своего месторасположения в пространстве, однако дерево одновременно может быть "слева" и "справа". Для того, чтобы избавиться от неоднозначности описания самого направления, выберем определенное направление за положительное, противоположное выбранному будет отрицательным. Выбранное направление обозначают осью со стрелкой, стрелка указывает положительное направление. В нашем примере выберем и обозначим два направления. Слева направо (ось, по которой движется велосипедист), и от нас внутрь монитора к дереву - это второе положительное направление. Если первое, выбранное нами направление, обозначить за X, второе - за Y, получим двухмернуюсистему координат .


Относительно нас велосипедист движется в отрицательном направлении по оси X, дерево находится в положительном направлении по оси Y


Относительно нас велосипедист движется в положительном направлении по оси X, дерево находится в положительном направлении по оси Y

А теперь определите, какой предмет в комнате находится в 2 метрах в положительном направлении по оси X (справа от вас), и в 3 метрах в отрицательном направлении по оси Y (позади вас).(2;-3) - координаты этого тела. Первой цифрой "2" принято обозначать расположение по оси X, вторая цифра "-3" указывает расположение по оси Y. Она отрицательная, потому что по оси Y находится не в стороне дерева, а в противоположной стороне. После того, как выбрано тело отсчета и направления, месторасположение любого предмета будет описано однозначно. Если вы повернетесь спиной к монитору, справа и позади вас будет уже другой предмет, но и координаты у него будут другие (-2;3). Таким образом, координаты точно и однозначно определяют расположение предмета.

Пространство, в котором мы живем, - пространство трех измерений, как говорят, трехмерное пространство. Кроме того, что тело может находится "справа" ("слева"), "впереди" ("позади"), оно может быть еще "выше" или "ниже" вас. Это третье направление - принято обозначать его осью Z

Можно ли выбирать не такие направления осей? Можно. Но нельзя менять их направления в течение решения, например, одной задачи. Можно ли выбрать другие названия осей? Можно, но вы рискуете тем, что вас не поймут другие, лучше так не поступать. Можно ли поменять местами ось X с осью Y? Можно, но не путайтесь в координатах:(x;y) .


При прямолинейном движении тела для определения его положения достаточно одной координатной оси.

Для описания движения на плоскости используется прямоугольная система координат, состоящая из двух взаимно перпендикулярных осей (декартовая система координат).

С помощью трехмерной системы координат можно определить положение тела в пространстве.

Система отсчета

Каждое тело в любой момент времени занимает определенное положение в пространстве относительно других тел. Определять его положение уже умеем. Если с течением времени положение тела не изменяется, то оно покоится. Если же с течением времени положение тела изменяется, то это означает, что тело движется. Все в мире происходит где-то и когда-то: в пространстве (где?) и во времени (когда?). Если к телу отсчета, системе координат, которые определяют положение тела, добавить способ измерения времени - часы, получимсистему отсчета . При помощи которой можно оценить движется или покоится тело.

Относительность движения

Космонавт вышел в открытый космос. В состоянии покоя или движения он находится? Если рассматривать его относительно друга космонавта, находящегося рядом, он будет покоиться. А если относительно наблюдателя на Земле, космонавт движется с огромной скоростью. Аналогично с поездкой в поезде. Относительно людей в поезде вы неподвижно сидите и читаете книгу. Но относительно людей, которые остались дома, вы двигаетесь со скоростью поезда.


Примеры выбора тела отсчета, относительно которого на рисунке а) поезд движется (относительно деревьев), на рисунке б) поезд покоится относительно мальчика.

Сидя в вагоне, ожидаем отправления. В окне наблюдаем за электричкой на параллельном пути. Когда она начинает двигаться, трудно определить кто движется - наш вагон или электричка за окном. Для того, чтобы определиться, необходимо оценить движемся ли мы относительно других неподвижных предметов за окном. Мы оцениваем состояние нашего вагона относительно различных систем отсчета.

Изменение перемещения и скорости в разных системах отсчета

Перемещение и скорость изменяются при переходе из одной системы отсчета в другую.

Скорость человека относительно земли (неподвижной системы отсчета) различная в первом и втором случаях.

Правило сложения скоростей:Скорость тела относительно неподвижной системы отсчета - это векторная сумма скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной.

Аналогично вектора перемещения. Правило сложения перемещений:Перемещение тела относительно неподвижной системы отсчета - это векторная сумма перемещения тела относительно подвижной системы отсчета и перемещения подвижной системы отсчета относительно неподвижной.


Пусть человек идет по вагону по направлению (или против) движения поезда. Человек - тело. Земля - неподвижная система отсчета. Вагон - подвижная система отсчета.


Изменение траектории в разных системах отсчета

Траектория движения тела относительна. Например, рассмотрим пропеллер вертолета, спускающегося на Землю. Точка на пропеллере описывает окружность в системе отсчета, связанного с вертолетом. Траектория движения этой точки в системе отсчета, связанной с Землей, представляет собой винтовую линию.


Поступательное движение

Движение тела - это изменение его положения в пространстве относительно других тел с течением времени. Каждое тело имеет определенные размеры, иногда разные точки тела находятся в разных местах пространства. Как же определить положение всех точек тела?

НО! Иногда нет необходимости указывать положение каждой точки тела. Рассмотрим подобные случаи. Например, это не нужно делать, когда все точки тела движутся одинаково.



Одинаково движутся все токи чемодана, машины.

Движение тела, при котором все его точки движутся одинаково, называетсяпоступательным

Материальная точка

Не нужно описывать движение каждой точки тела и тогда, когда его размеры очень малы по сравнению с расстоянием, которое оно проходит. Например, корабль, преодолевающий океан. Астрономы при описании движения планет и небесных тел друг относительно друга не учитывают их размеров и их собственное движение. Несмотря на то, что, например, Земля громадная, относительно расстояния до Солнца она ничтожно мала.

Нет необходимости рассматривать движение каждой точки тела, когда они не влияют на движение тела всего целиком. Такое тело можно представлять точкой. Все вещество тела как бы сосредотачиваем в точку. Получаем модель тела, без размеров, но она имеет массу. Это и естьматериальная точка .

Одно и то же тело при одних его движениях можно считать материальной точкой, при других - нельзя. Например, когда мальчик идет из дома в школу и при этом проходит расстояние 1 км, то в этом движении его можно считать материальной точкой. Но когда тот же мальчик выполняет зарядку, то точкой его считать уже нельзя.

Рассмотрим движущихся спортсменов


В этом случае можно спортсмена моделировать материальной точкой

В случае прыжка спортсмена в воду (рисунок справа) нельзя моделировать его в точку, так как от любого положения рук и ног зависит движение всего тела

Главное запомнить

1) Положение тела в пространстве определяется относительно тела отсчета;
2) Необходимо задать оси (их направления), т.е. систему координат, которая определяет координаты тела;
3) Движение тела определяется относительно системы отсчета;
4) В разных системах отсчета скорость тела может быть разной;
5) Что такое материальная точка

Более сложная ситуация сложения скоростей. Пусть человек переправляется на лодке через реку. Лодка - это исследуемое тело. Неподвижная система отсчета - земля. Подвижная система отсчета - река.

Скорость лодки относительно земли - это векторная сумма

Чему равно перемещение какой-либо точки, находящейся на краю диска радиусом R при его повороте относительно подставки на 600? на 1800? Решить в системах отсчета, связанных с подставкой и диском.

В системе отсчета, связанной с подставкой, перемещения равны R и 2R. В системе отсчета, связанной с диском, перемещение все время равно нулю.

Почему дождевые капли в безветренную погоду оставляют наклонные прямые полосы на стеклах равномерно движущегося поезда?

В системе отсчета, связанной с Землей, траектория капли - вертикальная линия. В системе отсчета, связанной с поездом, движение капли по стеклу есть результат сложения двух прямолинейных и равномерных движений: поезда и равномерного падения капли в воздухе. Поэтому след капли на стекле наклонный.

Каким образом можно определить скорость бега, если тренироваться на беговой дорожке со сломанным автоматическим определением скорости? Ведь относительно стен зала не пробегаешь ни одного метра.

Еще в школьной программе есть положение о том, что любое движение одного тела можно зафиксировать только лишь относительно иного тела. Это положение и называют термином «относительность движения». По картинкам учебников было понятно, что для стоящего на берегу реки плывущей мимо лодки складывается из ее скорости и скорости течения реки. После такого детального рассмотрения становится ясно, что относительность движения окружает нас во всех аспектах нашей жизни. Скорость объекта - величина относительная, но и производная от нее, ускорение, также становится Важность такого вывода состоит в том, что именно ускорение имеется в составе формулы второго закона Ньютона (основного закона механики). По этому закону любая сила, воздействующая на тело, дает ему пропорциональное ей ускорение. Относительность движения заставляет задать дополнительный вопрос: относительно какого тела придается ускорение?

В данном законе нет никаких пояснений на этот счет, но путем простых логических умозаключений можно прийти к выводу, что, поскольку сила является мерой воздействия одного тела (1) на другое (2), то эта же сила сообщает телу (2) ускорение относительно тела (1), а не просто какое-то абстрактное ускорение.

Относительность движения - это зависимость определенной какого-либо тела, определенного пути, скорости и перемещения от выбранных систем отсчета. В аспекте кинематики любые применяемые системы отсчета равноправны, но при этом все кинематические характеристики этого движения (траектория, скорость, перемещение) в них разные. Все величины, зависящие от выбранной системы отсчета, с помощью которой будут производиться их измерения, называются относительными.

Относительность движения, определение которой довольно сложно дать без детального рассмотрения других понятий, требует точного математического расчета. Говорить о том, движется тело или нет, можно тогда, когда абсолютно ясно, относительно чего (тела отсчета) меняется его положение. Система отсчета представляет собой совокупность таких элементов, как тело отсчета, а также связанных с ним системы координат и системы отсчета времени. По отношению к этим элементам и рассматривается движение любых тел или Математически движение объекта (точки) по отношению к избранной системе отсчета описывается уравнениями, устанавливающими, как изменяются во времени координаты, которые определяют положение объекта в этой системе. Такие уравнения, определяющие относительность движения, называют уравнениями движения.

В современной механике любое движение объекта является относительным, поэтому его следует рассматривать только по отношению к другому объекту (телу отсчета) или целой системе тел. Например, нельзя просто указать, что Луна движется вообще. Правильным высказыванием будет то, что Луна движется по отношению к Солнцу, Земле, звездам.

Часто в механике и систему отсчета увязывают не с телом, а с целым континуумом базовых тел (настоящих или вымышленных), которые определяют систему координат.

В кинофильмах нередко показывают движение относительно различных тел. Так, например, в одних кадрах показывают поезд, который движется на фоне какого-то пейзажа (это движение относительно поверхности Земли), а в следующих - купе вагона, в окнах которого мелькают деревья (движение относительно одного вагона). Любое движение или покой тела, являющийся частным случаем движения, относительны. Поэтому, отвечая на простой вопрос, движется или покоится тело, и как оно движется, нужно уточнять, относительно каких объектов рассматривается его движение. Выбор систем отсчета, как правило, производится в зависимости от поставленных условий задачи.

Слова «тело движется» не имеют определенного смысла, так как нужно сказать, по отношению к каким телам или относительно какой системы отсчета это движение рассматривается. Приведем несколько примеров.

Пассажиры движущегося поезда неподвижны относительно стен вагона. И те же пассажиры движутся в системе отсчета, связанной с Землей. Поднимается лифт. Стоящий на его полу чемодан покоится относительно стен лифта и человека, находящегося в лифте. Но он движется относительно Земли и дома.

Эти примеры доказывают относительность движения и, в частности, относительность понятия скорости. Скорость одного и того же тела различна в разных системах отсчета.

Представьте себе пассажира в движущемся равномерно относительно поверхности Земли вагоне, выпускающего из рук мяч. Он видит, как мяч падает относительно вагона вертикально вниз с ускорением g . Свяжем с вагоном систему координат X 1 О 1 Y 1 (рис. 1). В этой системе координат за время падения мяч пройдет путь AD = h , и пассажир отметит, что мяч упал вертикально вниз и в момент удара о пол его скорость υ 1 .

Рис. 1

Ну а что увидит наблюдатель, стоящий на неподвижной платформе, с которой связана система координат XOY ? Он заметит (представим себе, что стены вагона прозрачны), что траекторией мяча является парабола AD , и мяч упал на пол со скоростью υ 2 , направленной под углом к горизонту (см. рис. 1).

Итак, мы отмечаем, что наблюдатели в системах координат X 1 О 1 Y 1 и XOY обнаруживают различные по форме траектории, скорости и пройденные пути при движении одного тела - мяча.

Надо отчетливо представлять себе, что все кинематические понятия: траектория, координаты, путь, перемещение, скорость имеют определенную форму или численные значения в одной выбранной системе отсчета. При переходе от одной системы отсчета к другой указанные величины могут измениться . В этом и состоит относительность движения, и в этом смысле механическое движение всегда относительно.

Связь координат точки в системах отсчета, движущихся друг относительно друга, описывается преобразованиями Галилея . Преобразования всех других кинематических величин являются их следствиями.

Пример . Человек идет по плоту, плывущему по реке. Известны и скорость человека относительно плота, и скорость плота относительно берега .

В примере идет речь о скорости человека относительно плота и скорости плота относительно берега. Поэтому одну систему отсчета K свяжем с берегом - это неподвижная система отсчета , вторую К 1 свяжем с плотом - это подвижная система отсчета . Введем обозначения скоростей:

  • 1 вариант (скорость относительно систем)

υ - скорость К

υ 1 - скорость этого же тела относительно подвижной системы отсчета K

u - скорость подвижной системы К К

$\vec{\upsilon }=\vec{u}+\vec{\upsilon }_{1} .\; \; \; (1)$

  • ”2 вариант

υ тон - скорость тела относительно неподвижной системы отсчета К (скорость человека относительно Земли);

υ топ - скорость этого же тела относительно подвижной системы отсчета K 1 (скорость человека относительно плота);

υ с - скорость подвижной системы К 1 относительно неподвижной системы К (скорость плота относительно Земли). Тогда

$\vec{\upsilon }_{тон} =\vec{\upsilon }_{c} +\vec{\upsilon }_{топ} .\; \; \; (2)$

  • 3 вариант

υ а (абсолютная скорость ) - скорость тела относительно неподвижной системы отсчета К (скорость человека относительно Земли);

υ от (относительная скорость ) - скорость этого же тела относительно подвижной системы отсчета K 1 (скорость человека относительно плота);

υ п (переносная скорость ) - скорость подвижной системы К 1 относительно неподвижной системы К (скорость плота относительно Земли). Тогда

$\vec{\upsilon }_{a} =\vec{\upsilon }_{от} +\vec{\upsilon }_{n} .\; \; \; (3)$

  • 4 вариант

υ 1 или υ чел - скорость первого тела относительно неподвижной системы отсчета К (скорость человека относительно Земли);

υ 2 или υ пл - скорость второго тела относительно неподвижной системы отсчета К (скорость плота относительно Земли);

υ 1/2 или υ чел/пл - скорость первого тела относительно второго (скорость человека относительно плота );

υ 2/1 или υ пл/чел - скорость второго тела относительно первого (скорость плота относительно человека ). Тогда

$\left|\begin{array}{c} {\vec{\upsilon }_{1} =\vec{\upsilon }_{2} +\vec{\upsilon }_{1/2} ,\; \; \, \, \vec{\upsilon }_{2} =\vec{\upsilon }_{1} +\vec{\upsilon }_{2/1} ;} \\ {} \\ {\vec{\upsilon }_{чел} =\vec{\upsilon }_{пл} +\vec{\upsilon }_{чел/пл} ,\; \; \, \, \vec{\upsilon }_{пл} =\vec{\upsilon }_{чел} +\vec{\upsilon }_{пл/чел} .} \end{array}\right. \; \; \; (4)$

Формулы (1-4) можно записать и для перемещений Δr , и для ускорений a :

$\begin{array}{c} {\Delta \vec{r}_{тон} =\Delta \vec{r}_{c} +\Delta \vec{r}_{топ} ,\; \; \; \Delta \vec{r}_{a} =\Delta \vec{r}_{от} +\Delta \vec{п}_{?} ,} \\ {} \\ {\Delta \vec{r}_{1} =\Delta \vec{r}_{2} +\Delta \vec{r}_{1/2} ,\; \; \, \, \Delta \vec{r}_{2} =\Delta \vec{r}_{1} +\Delta \vec{r}_{2/1} ;} \\ {} \\ {\vec{a}_{тон} =\vec{a}_{c} +\vec{a}_{топ} ,\; \; \; \vec{a}_{a} =\vec{a}_{от} +\vec{a}_{п} ,} \\ {} \\ {\vec{a}_{1} =\vec{a}_{2} +\vec{a}_{1/2} ,\; \; \, \, \vec{a}_{2} =\vec{a}_{1} +\vec{a}_{2/1} .} \end{array}$

План решения задач на относительность движения

1. Сделайте чертеж: тела изобразите в виде прямоугольников , над ними укажите направления скоростей и перемещений (если они нужны). Выберите направления осей координат.

2. Исходя из условия задачи или по ходу решения, определитесь с выбором подвижной системы отсчета (СО) и с обозначениями скоростей и перемещений.

  • Всегда начинайте с выбора подвижной СО. Если в задаче нет специальных оговорок, относительно какой СО заданы (или нужно найти) скорости и перемещения, то не принципиально, какую систему принять за подвижную СО. Удачный выбор подвижной системы существенно упрощает решение задачи.
  • Обратите внимание на то, чтобы одна и та же скорость (перемещение) обозначалась одинаково в условии, решении и на рисунке.

3. Запишите закон сложения скоростей и (или) перемещений в векторном виде:

$\vec{\upsilon }_{тон} =\vec{\upsilon }_{c} +\vec{\upsilon }_{топ} ,\; \; \, \, \Delta \vec{r}_{тон} =\Delta \vec{r}_{c} +\Delta \vec{r}_{топ} .$

  • Не забывайте и про другие варианты записи закона сложения:
$\begin{array}{c} {\vec{\upsilon }_{a} =\vec{\upsilon }_{от} +\vec{\upsilon }_{п} ,\; \; \; \Delta \vec{r}_{a} =\Delta \vec{r}_{от} +\Delta \vec{r}_{п} ,} \\ {} \\ {\vec{\upsilon }_{1} =\vec{\upsilon }_{2} +\vec{\upsilon }_{1/2} ,\; \; \, \, \Delta \vec{r}_{1} =\Delta \vec{r}_{2} +\Delta \vec{r}_{1/2} .} \end{array}$

4. Запишите проекции закона сложения на оси 0Х и 0Y (и другие оси)

0Х : υ тон x = υ с x + υ топ x , Δr тон x = Δr с x + Δr топ x , (5-6)

0Y : υ тон y = υ с y + υ топ y , Δr тон y = Δr с y + Δr топ y , (7-8)

  • Другие варианты:
0Х : υ a x = υ от x + υ п x , Δr а x = Δr от x + Δr п x ,

υ 1x = υ 2x + υ 1/2x , Δr 1x = Δr 2x + Δr 1/2x ,

0Y : υ a y = υ от y + υ п y , Δr а y = Δr от y + Δr п y ,

υ 1y = υ 2y + υ 1/2y , Δr 1y = Δr 2y + Δr 1/2y .

5. Найдите значения проекций каждой величины:

υ тон x = …, υ с x = …, υ топ x = …, Δr тон x = …, Δr с x = …, Δr топ x = …,

υ тон y = …, υ с y = …, υ топ y = …, Δr тон y = …, Δr с y = …, Δr топ y = …

  • Аналогично для других вариантов.

6. Подставьте полученные значения в уравнения (5) - (8).

7. Решите полученную систему уравнений.

  • Примечание . По мере наработки навыка решения таких задач, пункты 4 и 5 можно будет делать в уме, без записи в тетрадь.

Дополнения

  1. Если заданы скорости тел относительно тел, которые сейчас неподвижны, но могут двигаться (например, скорость тела в озере (нет течения) или в безветренную погоду), то такие скорости считают заданными относительно подвижной системы (относительно воды или ветра). Это собственные скорости тел, относительно неподвижной системы они могут меняться. Например, собственная скорость человека 5 км/ч. Но если человек идет против ветра, его скорость относительно земли станет меньше; если ветер дует в спину, скорость человека будет больше. Но относительно воздуха (ветра) его скорость остается равной 5 км/ч.
  2. В задачах обычно фразу «скорость тела относительно земли» (или относительно любого другого неподвижного тела), по умолчанию, заменяют на «скорость тела». Если скорость тела задана не относительно земли, то это должно быть указано в условии задачи. Например, 1) скорость самолета 700 км/ч, 2) скорость самолета в безветренную погоду 750 км/ч. В примере один, скорость 700 км/ч задана относительно земли, во втором - скорость 750 км/ч задана относительно воздуха (см. дополнение 1).
  3. В формулах, в которые входят величины с индексами, должен выполняться принцип соответствия , т.е. индексы соответствующих величин должны совпадать. Например, $t=\dfrac{\Delta r_{тон x} }{\upsilon _{тон x}} =\dfrac{\Delta r_{c x}}{\upsilon _{c x}} =\dfrac{\Delta r_{топ x}}{\upsilon _{топ x}}$.
  4. Перемещение при прямолинейном движении направлено в ту же сторону, что и скорость, поэтому знаки проекций перемещения и скорости относительно одной и той же системы отсчета совпадают.
error: