Все слабые электролиты. Учебная книга по химии

В зависимости от степени диссоциации различают электролиты сильные и слабые. К - константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита. Реакции между ионами в растворах электролитов идут практически до конца в сторону образования осадков, газов и слабых электролитов.

Электроли́т - вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов. Примерами электролитов могут служить водные растворы кислот, солей и оснований и некоторые кристаллы (например, иодид серебра, диоксид циркония).

Как определить сильные и слабые электролиты

Одновременно в электролите протекают процессы ассоциации ионов в молекулы. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации. Чаще всего подразумевают водный раствор, содержащий те или иные ионы (напр., «всасывание электролитов» в кишечнике). Многокомпонентный раствор для электроосаждения металлов, а также травления и др. (технический термин, например электролит золочения).

Основным объектом исследования и разработки в гальванотехнике являются электролиты для обработки поверхности и нанесения на неё покрытий. При химическом травлении металлов названия электролитов определяется названием основных кислот или щелочей, способствующих растворению металла. Так формируется групповое название электролитов. Иногда разница (особенно в величине поляризуемости) между электролитами разных групп нивелируется добавками, содержащимися в электролитах.

Электролиты и электролитическая диссоциация

Поэтому такое название не может являться классификационным (то есть групповым), а должно служить дополнительным подгрупповым наименованием электролита. Если плотность электролита во всех ячейках аккумулятора нормальная или близка к норме (1,25-1,28 г/см3), а НРЦ не ниже 12,5 В, то необходимо проверить на обрыв цепи внутри аккумулятора. При низкой плотности электролита во всех ячейках батарею следует зарядить до стабилизации плотности.

В технике[править править вики-текст]

При переходе от одного состояния в другое, показатели напряжения и плотности электролита линейно изменяются в определенных пределах (рис.4 и табл.1). Чем глубже происходит разряд аккумулятора, тем ниже плотность электролита. Соответственно, в объеме электролита содержится количество серной кислоты, необходимое для полного использования в реакции активного вещества пластин.

Ионная проводимость присуща многим химическим соединениям, обладающим ионным строением, например солям в твердом или расплавленном состояниях, а также многим водным и неводным растворам. Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов - катионов и анионов. Степень диссоциации часто выражают в процентах. Это объясняется тем, что концентрации металлических меди и серебра введены в константу равновесия.

Объясняется это тем, что концентрация воды во время реакций в водных растворах изменяется очень незначительно. Поэтому принимается, что концентрация остается постоянной и вводится в константу равновесия. Поскольку электролиты в растворах образуют ионы, то для отражения сущности реакций часто используют так называемые ионные уравнения реакций.

Термин электролит широко используется в биологии и медицине. Процесс распада молекул в растворе или расплаве электролита на ионы называется электролитической диссоциацией. Поэтому в электролитах диссоциирована определённая доля молекул вещества. Между этими двумя группами чёткой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом - слабого.

Сильные и слабые электролиты

В растворах некоторых электролитов диссоциируют лишь часть молекул. Для количественной характеристики силы электролита было введено понятие степени диссоциации. Отношение числа молекул, диссоциированных на ионы, к общему числу молекул растворенного вещества называется степенью диссоциации a.

где С - концентрация продиссоциированных молекул, моль/л;

С 0 - исходная концентрация раствора, моль/л.

По величине степени диссоциации все электролиты делятся на сильные и слабые. К сильным электролитам относятся те, степень диссоциации которых больше 30% (a > 0,3). К ним относятся:

· сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI);

· растворимые гидроксиды, кроме NH 4 OH;

· растворимые соли.

Электролитическая диссоциация сильных электролитов протекает необратимо

HNO 3 ® H + + NO - 3 .

Слабые электролиты имеют степень диссоциации меньше 2% (a< 0,02). К ним относятся:

· слабые неорганические кислоты (Н 2 СО 3 , Н 2 S, НNO 2 , HCN, H 2 SiO 3 и др.) и все органические, например, уксусная кислота (CH 3 COOH);

· нерастворимые гидроксиды, а также растворимый гидроксид NH 4 OH;

· нерастворимые соли.

Электролиты с промежуточными значениями степени диссоциации называют электролитами средней силы.

Степень диссоциации (a) зависит от следующих факторов:

от природы электролита, то есть от типа химических связей; диссоциация наиболее легко происходит по месту наиболее полярных связей;

от природы растворителя - чем полярнее последний, тем легче идет в нем процесс диссоциации;

от температуры - повышение температуры усиливает диссоциацию;

от концентрации раствора - при разбавлении раствора диссоциация также увеличивается.

В качестве примера зависимости степени диссоциации от характера химических связей рассмотрим диссоциацию гидросульфата натрия (NaHSO 4), в молекуле которого имеются следующие типы связей: 1-ионная; 2 - полярная ковалентная; 3 - связь между атомами серы и кислорода малополярная. Наиболее легко происходит разрыв по месту ионной связи (1):

Na 1 O 3 O S 3 H 2 O O 1. NaHSO 4 ® Na + + HSO - 4 , 2. затем по месту полярной связи меньшей степени: HSO - 4 ® H + + SO 2 - 4 . 3. кислотный остаток на ионы не диссоциирует.

Степень диссоциации электролита сильно зависит от природы растворителя. Например, HCl сильно диссоциирует в воде, слабее в этаноле C 2 H 5 OH, почти не диссоциирует в бензоле, в котором практически не проводит электрического тока. Растворители с высокой диэлектрической проницаемостью (e) поляризуют молекулы растворенного вещества и образуют с ними сольватированные (гидратированные) ионы. При 25 0 С e(H 2 O) =78,5, e(C 2 H 5 OH) = 24,2, e(C 6 H 6) = 2,27.

В растворах слабых электролитов процесс диссоциации протекает обратимо и, следовательно, к равновесию в растворе между молекулами и ионами применимы законы химического равновесия. Так, для диссоциации уксусной кислоты

CH 3 COOH « CH 3 COO - + H + .

Константа равновесия К с будет определяться как

К с = К д = СCH 3 COO - · С H + / СCH 3 COOH.

Константу равновесия (К с) для процесса диссоциации называют константой диссоциации (К д). Её значение зависит от природы электролита, растворителя и от температуры, но от концентрации электролита в растворе она не зависит. Константа диссоциации представляет собой важную характеристику слабых электролитов, так как она указывает на прочность их молекул в растворе. Чем меньше константа диссоциации, тем слабее диссоциирует электролит и тем устойчивее его молекулы. Учитывая, что степень диссоциации в отличие от константы диссоциации изменяются с концентрацией раствора, необходимо найти связь между К д и a. Если исходную концентрацию раствора принять равной С, а степень диссоциации, соответствующую этой концентрации a, то число продиссоциированных молекул уксусной кислоты будет равна a · С. Так как

СCH 3 COO - = С H + = a · С,

тогда концентрация нераспавшихся молекул уксусной кислоты будет равна (С - a · С) или С(1- a · С). Отсюда

К д = aС · a С /(С - a · С) = a 2 С / (1- a). (1)

Уравнение (1) выражает закон разбавления Оствальда. Для очень слабых электролитов a<<1, то приближенно К @ a 2 С и

a = (К / С). (2)

Как видно из формулы (2), с уменьшением концентрации раствора электролита (при разбавлении) степень диссоциации увеличивается.

Слабые электролиты диссоциируют по ступеням, например:

1 ступень H 2 СO 3 « H + + НСO - 3 ,

2 ступень НСO - 3 « H + + СO 2 - 3 .

Такие электролиты характеризуются несколькими константами - в зависимости от числа ступеней распада на ионы. Для угольной кислоты

К 1 = Сн + · СНСО - 2 / СН 2 СО 3 = 4,45×10 -7 ; К 2 = Сн + · ССО 2- 3 / СНСО - 3 = 4,7 ×10 -11 .

Как видно, распад на ионы угольной кислоты определяется, главным образом, первой стадией, а вторая может проявляться только при большом разбавлении раствора.

Суммарному равновесию H 2 СO 3 « 2H + + СO 2 - 3 отвечает суммарная константа диссоциации

К д = С 2 н + · ССО 2- 3 / СН 2 СО 3 .

Величины К 1 и К 2 связаны друг с другом соотношением

К д = К 1 · К 2 .

Аналогично ступенчато диссоциируют основания многовалентных металлов. Например, двум ступеням диссоциации гидроксида меди

Cu(OH) 2 « CuOH + + OH - ,

CuOH + « Cu 2+ + OH -

отвечают константы диссоциации

К 1 = СCuOH + · СОН - / СCu(OH) 2 и К 2 = Сcu 2+ · СОН - / СCuOH + .

Так как сильные электролиты диссоциированы в растворе нацело, то сам термин константы диссоциации для них лишен содержания.

Диссоциация различных классов электролитов

С точки зрения теории электролитической диссоциации кислотой называется вещество, при диссоциации которого в качестве катиона образуется только гидратированный ион водорода Н 3 О (или просто Н +).

Основанием называется вещество, которое в водном растворе в качестве аниона образует гидроксид-ионы ОН - и никаких других анионов.

Согласно теории Бренстеда, кислота - это донор протонов, а основание - акцептор протонов.

Сила оснований, как сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации, тем сильнее электролит.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. Такие гидроксиды называются амфотерными. К нимотносятся Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Pb(OH) 2 , Cr(OH) 3 , Al(OH) 3 . Свойства их обусловлены тем, что они в слабой степени диссоциируют по типу кислот и по типу оснований

H + + RO - « ROH « R + + OН - .

Это равновесие объясняется тем, что прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Поэтому при взаимодействии гидроксида бериллия с соляной кислотой получается хлорид бериллия



Be(OH) 2 + HCl = BeCl 2 + 2H 2 O ,

а при взаимодействии с гидроксидом натрия - бериллат натрия

Be(OH) 2 + 2NaOH = Na 2 BeO 2 + 2H 2 O.

Соли можно определить как электролиты, которые в растворе диссоциируют с образованием катионов, отличных от катионов водорода, и анионов, отличных от гидроксид-ионов.

Средние соли , получаемые при полном замещении ионов водорода соответствующих кислот на катионы металла (либоNH + 4), диссоциируют полностью Na 2 SO 4 « 2Na + + SO 2- 4 .

Кислые соли диссоциируют по ступеням

1 ступень NaHSO 4 « Na + + HSO - 4 ,

2 ступень HSO - 4 « H + + SO 2- 4 .

Степенью диссоциации по 1-й ступени больше, чем по 2-й ступени, причем, чем слабее кислота, тем меньше степень диссоциации по 2-й ступени.

Основные соли, получаемые при неполном замещении гидроксид-ионов на кислотные остатки, диссоциируют также по ступеням:

1 ступень (CuОH) 2 SO 4 « 2 CuОH + + SO 2- 4 ,

2 ступень CuОH + « Cu 2+ + OH - .

Основные соли слабых оснований диссоциируют в основном по 1-й ступени.

Комплексные соли, содержащие сложный комплексный ион, сохраняющий свою стабильность при растворении, диссоциируют на комплексный ион и ионы внешней сферы

K 3 « 3K + + 3 - ,

SO 4 « 2+ + SO 2 - 4 .

В центре комплексного иона находится атом - комплексообразователь. Эту роль обычно выполняют ионы металла. Вблизи комплексообразователей расположены (координированы) полярные молекулы или ионы, а иногда и те и другие вместе, их называют лигандами. Комплексообразователь вместе с лигандами составляет внутреннюю сферу комплекса. Ионы, далеко расположенные от комплексообразователя, менее прочно связанные с ним, находятся во внешней среде комплексного соединения. Внутреннюю сферу обычно заключают в квадратные скобки. Число, показывающее число лигандов во внутренней сфере, называется координационным . Химические связи между комплексными и простыми ионами в процессе электролитической диссоциации сравнительно легко разрываются. Связи, приводящие к образованию комплексных ионов, получили название донорно-акцепторных связей.

Ионы внешней сферы легко отщепляются от комплексного иона. Эта диссоциация называется первичной. Обратимый распад внутренней сферы происходит значительно труднее и носит название вторичной диссоциации

Cl « + + Cl - - первичная диссоциация,

+ « Ag + +2 NH 3 - вторичная диссоциация.

вторичная диссоциация, как диссоциация слабого электролита, характеризуется константой нестойкости

К нест. = × 2 / [ + ] = 6,8×10 -8 .

Константы нестойкости (К нест.) различных электролитов является мерой устойчивости комплекса. Чем меньше К нест. , тем устойчивее комплекс.

Так, среди однотипных соединений:

- + + +
К нест = 1,3×10 -3 К нест =6,8×10 -8 К нест =1×10 -13 К нест =1×10 -21

устойчивость комплекса возрастает при переходе от - к + .

Значения константы нестойкости приводят в справочниках по химии. С помощью этих величин можно предсказать течение реакций между комплексными соединениями при сильном различии констант нестойкости реакция пойдет в сторону образования комплекса с меньшей константой нестойкости.

Комплексная соль с малоустойчивым комплексным ионом называется двойной солью . Двойные соли, в отличие от комплексных, диссоциируют на все ионы, входящие в их состав. Например:

KAl(SO 4) 2 « K + + Al 3+ + 2SO 2- 4 ,

NH 4 Fe(SO 4) 2 « NH 4 + + Fe 3+ + 2SO 2- 4 .

Электролиты как химические вещества известны с древних времён. Однако большинство областей своего применения они завоевали относительно недавно. Мы обсудим самые приоритетные для промышленности области использования этих веществ и разберёмся, что же последние собой представляют и чем отличаются друг от друга. Но начнём с экскурса в историю.

История

Самые старые известные электролиты - это соли и кислоты, открытые ещё в Древнем мире. Однако представления о строении и свойствах электролитов развивались со временем. Теории этих процессов эволюционировали, начиная с 1880 годов, когда был сделан ряд открытий, связанный с теориями свойств электролитов. Наблюдались несколько качественных скачков в теориях, описывающих механизмы взаимодействия электролитов с водой (ведь только в растворе они приобретают те свойства, благодаря которым их используют в промышленности).

Сейчас мы подробно разберём несколько теорий, оказавших наибольшее влияние на развитие представлений об электролитах и их свойствах. И начнём с самой распространённой и простой теории, которую каждый из нас проходил в школе.

Теория электролитической диссоциации Аррениуса

в 1887 году шведский химик и Вильгельм Оствальд создали теорию электролитической диссоциации. Однако тут тоже не всё так просто. Сам Аррениус был сторонником так называемой физической теории растворов, которая не учитывала взаимодействие составляющих вещества с водой и утверждала, что в растворе существуют свободные заряженные частицы (ионы). Кстати, именно с таких позиций сегодня рассматривают электролитическую диссоциацию в школе.

Поговорим всё-таки о том, что даёт эта теория и как она объясняет нам механизм взаимодействия веществ с водой. Как и у любой другой, у неё есть несколько постулатов, которые она использует:

1. При взаимодействии с водой вещество распадается на ионы (положительный - катион и отрицательный - анион). Эти частицы подвергаются гидратации: они притягивают молекулы воды, которые, кстати, заряжены с одной стороны положительно, а с другой - отрицательно (образуют диполь), в результате формируются в аквакомплексы (сольваты).

2. Процесс диссоциации обратим - то есть если вещество распалось на ионы, то под действием каких-либо факторов оно вновь может превратиться в исходное.

3. Если подключить к раствору электроды и пустить ток, то катионы начнут движение к отрицательному электроду - катоду, а анионы к положительно заряженному - аноду. Именно поэтому вещества, хорошо растворимые в воде, проводят электрический ток лучше, чем сама вода. По той же причине их назвали электролитами.

4. электролита характеризует процент вещества, подвергшегося растворению. Этот показатель зависит от свойств растворителя и самого растворённого вещества, от концентрации последнего и от внешней температуры.

Вот, по сути, и все основные постулаты этой несложной теории. Ими мы будем пользоваться в этой статье для описания того, что же происходит в растворе электролита. Примеры этих соединений разберём чуть позже, а сейчас рассмотрим другую теорию.

Теория кислот и оснований Льюиса

По теории электролитической диссоциации, кислота - это вещество, в растворе которого присутствует катион водорода, а основание - соединение, распадающееся в растворе на гидроксид-анион. Существует другая теория, названная именем известного химика Гилберта Льюиса. Она позволяет несколько расширить понятие кислоты и основания. По теории Льюиса, кислоты - или молекулы вещества, которые имеют свободные электронные орбитали и способны принять электрон от другой молекулы. Несложно догадаться, что основаниями будут являться такие частицы, которые способны отдать один или несколько своих электронов в "пользование" кислоте. Очень интересно здесь то, что кислотой или основанием может быть не только электролит, но и любое вещество, даже нерастворимое в воде.

Протолитическая теория Брендстеда-Лоури

В 1923 году, независимо друг от друга, двое учёных - Й. Бренстед и Т. Лоури -предложили теорию, которая сейчас активно применяется учёными для описания химических процессов. Суть этой теории в том, что смысл диссоциации сводится к передаче протона от кислоты основанию. Таким образом, последнее понимается здесь как акцептор протонов. Тогда кислота является их донором. Теория также хорошо объясняет существование веществ, проявляющих свойства и кислоты и основания. Такие соединения называются амфотерными. В теории Бренстеда-Лоури для них также применяется термин амфолиты, тогда как кислота или основания принято называть протолитами.

Мы подошли к следующей части статьи. Здесь мы расскажем, чем отличаются друг от друга сильные и слабые электролиты и обсудим влияние внешних факторов на их свойства. А затем уже приступим к описанию их практического применения.

Сильные и слабые электролиты

Каждое вещество взаимодействует с водой индивидуально. Какие-то растворяются в ней хорошо (например, поваренная соль), а какие-то совсем не растворяются (например, мел). Таким образом, все вещества делятся на сильные и слабые электролиты. Последние представляют собой вещества, плохо взаимодействующие с водой и оседающие на дне раствора. Это означает, что они имеют очень низкую степень диссоциации и высокую энергию связей, которая не позволяет при нормальных условиях распадаться молекуле на составляющие её ионы. Диссоциация слабых электролитов происходит либо очень медленно, либо при повышении температуры и концентрации этого вещества в растворе.

Поговорим о сильных электролитах. К ним можно отнести все растворимые соли, а также сильные кислоты и щёлочи. Они легко распадаются на ионы и очень трудно собрать их в осадки. Ток в электролитах, кстати, проводится именно благодаря ионам, содержащимся в растворе. Поэтому лучше всех проводят ток сильные электролиты. Примеры последних: сильные кислоты, щёлочи, растворимые соли.

Факторы, влияющие на поведение электролитов

Теперь разберёмся, как влияет изменение внешней обстановки на Концентрация напрямую влияет на степень диссоциации электролита. Более того, это соотношение можно выразить математически. Закон, описывающий эту связь, называется законом разбавления Оствальда и записывается так: a = (K / c) 1/2 . Здесь a - это степень диссоциации (берётся в долях), К - константа диссоциации, разная для каждого вещества, а с - концентрация электролита в растворе. По этой формуле можно узнать много нового о веществе и его поведении в растворе.

Но мы отклонились от темы. Кроме концентрации, на степень диссоциации также влияет температура электролита. Для большинства веществ её увеличение повышает растворимость и химическую активность. Именно этим можно объяснить протекание некоторых реакций только при повышенной температуре. При нормальных условиях они идут либо очень медленно, либо в обе стороны (такой процесс называется обратимым).

Мы разобрали факторы, определяющие поведение такой системы, как раствор электролита. Сейчас перейдём к практическому применению этих, без сомнения, очень важных химических веществ.

Промышленное использование

Конечно, все слышали слово "электролит" применительно к аккумуляторам. В автомобиле используют свинцово-кислотные аккумуляторы, роль электролита в котором выполняет 40-процентная серная кислота. Чтобы понять, зачем там вообще нужно это вещество, стоит разобраться в особенностях работы аккумуляторов.

Так в чём принцип работы любого аккумулятора? В них происходит обратимая реакция превращения одного вещества в другое, в результате которой высвобождаются электроны. При заряде аккумулятора происходит взаимодействие веществ, которого не получается при нормальных условиях. Это можно представить как накопление электроэнергии в веществе в результате химической реакции. При разряде же начинается обратное превращение, приводящее систему к начальному состоянию. Эти два процесса вместе составляют один цикл заряда-разряда.

Рассмотрим вышеизложенный процесс на конкретном примере - свинцово-кислотном аккумуляторе. Как нетрудно догадаться, этот источник тока состоит из элемента, содержащего свинец (а также диокисд свинца PbO 2) и кислоты. Любой аккумулятор состоит из электродов и пространства между ними, заполненного как раз электролитом. В качестве последнего, как мы уже выяснили, в нашем примере используется серная кислота концентрацией 40 процентов. Катод такого аккумулятора делают из диоксида свинца, а анод состоит из чистого свинца. Всё это потому, что на этих двух электродах протекают разные обратимые реакции с участием ионов, на которые продиссоциировала кислота:

  1. PbO 2 + SO 4 2- + 4H + + 2e - = PbSO 4 + 2H 2 O (реакция, происходящая на отрицательном электроде - катоде).
  2. Pb + SO 4 2- - 2e - = PbSO 4 (Реакция, протекающая на положительном электроде - аноде).

Если читать реакции слева направо - получаем процессы, происходящие при разряде аккумулятора, а если справа налево - при заряде. В каждом эти реакции разные, но механизм их протекания в общем описывается одинаково: происходят два процесса, в одном из которых электроны "поглощаются", а в другом, наоборот, "выходят". Самое главное то, что число поглощённых электронов равно числу вышедших.

Собственно, кроме аккумуляторов, существует масса применений этих веществ. Вообще, электролиты, примеры которых мы привели, - это лишь крупинка того многообразия веществ, которые объединены под этим термином. Они окружают нас везде, повсюду. Вот, например, тело человека. Думаете, там нет этих веществ? Очень ошибаетесь. Они находятся везде в нас, а самое большое количество составляют электролиты крови. К ним относятся, например, ионы железа, которые входят в состав гемоглобина и помогают транспортировать кислород к тканям нашего организма. Электролиты крови также играют ключевую роль в регуляции водно-солевого баланса и работе сердца. Эту функцию выполняют ионы калия и натрия (существует даже процесс, происходящий в клетках, который назвается калий-натриевым насосом).

Любые вещества, которые вы в силах растворить хоть немного, - электролиты. И нет такой отрасли промышленности и нашей с вами жизни, где бы они ни применялись. Это не только аккумуляторы в автомобилях и батарейки. Это любое химическое и пищевое производство, военные заводы, швейные фабрики и так далее.

Состав электролита, кстати, бывает разным. Так, можно выделить кислотный и щелочной электролит. Они принципиально отличаются своими свойствами: как мы уже говорили, кислоты являются донорами протонов, а щёлочи - акцепторами. Но со времением состав электролита меняется вследствие потери части вещества концентрация либо уменьшается, либо увеличивается (всё зависит от того, что теряется, вода или электролит).

Мы каждый день сталкиваемся с ними, однако мало кто точно знает определение такого термина, как электролиты. Примеры конкретных веществ мы разобрали, поэтому перейдём к немного более сложным понятиям.

Физические свойства электролитов

Теперь о физике. Самое важное, что нужно понимать при изучении этой темы - как передаётся ток в электролитах. Определяющую роль в этом играют ионы. Эти заряженные частицы могут переносить заряд из одной части раствора в другую. Так, анионы стремятся всегда к положительному электроду, а катионы - к отрицательному. Таким образом, действуя на раствор электрическим током, мы разделяем заряды по разным сторонам системы.

Очень интересна такая физическая характеристика, как плотность. От неё зависят многие свойства обсуждаемых нами соединений. И зачастую всплывает вопрос: "Как поднять плотность электролита?" На самом деле ответ прост: необходимо понизить содержание воды в растворе. Так как плотность электролита большей частью определяется то она большей частью зависит от концентрации последней. Существует два способа осуществить задуманное. Первый достаточно простой: прокипятить электролит, содержащийся в аккумуляторе. Для этого нужно зарядить его так, чтобы температура внутри поднялась чуть выше ста градусов по цельсию. Если этот способ не помогает, не переживайте, существует ещё один: просто-напросто заменить старый электролит новым. Для этого нужно слить старый раствор, прочистить внутренности от остатков серной кислоты дистиллированной водой, а затем залить новую порцию. Как правило, качественные растворы электролита сразу имеют нужную величину концентрации. После замены можете надолго забыть о том, как поднять плотность электролита.

Состав электролита во многом определяет его свойства. Такие характеристики, как электропроводность и плотность, например, сильно зависят от природы растворённого вещества и его концентрации. Существует отдельный вопрос о том, сколько электролита в аккумуляторе может быть. На самом деле его объём напрямую связан с заявленной мощностью изделия. Чем больше серной кислоты внутри аккумулятора, тем он мощнее, т. е. тем большее напряжение способен выдавать.

Где это пригодится?

Если вы автолюбитель или просто увлекаетесь автомобилями, то вы и сами всё понимаете. Наверняка вы даже знаете, как определить, сколько электролита в аккумуляторе находится сейчас. А если вы далеки от автомобилей, то знание свойств этих веществ, их применения и того, как они взаимодействуют друг с другом будет совсем не лишним. Зная это, вы не растеряетесь, если вас попросят сказать, какой электролит в аккумуляторе. Хотя даже если вы не автолюбитель, но у вас есть машина, то знание устройства аккумулятора будет совсем не лишним и поможет вам в ремонте. Будет гораздо легче и дешевле сделать всё самому, нежели ехать в автоцентр.

А чтобы лучше изучить эту тему, мы рекомендуем почитать учебник химии для школы и вузов. Если вы хорошо знаете эту науку и прочитали достаточно учебников, лучшим вариантом будут "Химические источники тока" Варыпаева. Там изложены подробно вся теория работы аккумуляторов, различных батарей и водородных элементов.

Заключение

Мы подошли к концу. Подведём итоги. Выше мы разобрали всё, что касается такого понятия, как электролиты: примеры, теория строения и свойств, функции и применение. Ещё раз стоит сказать, что эти соединения составляют часть нашей жизни, без которой не могли бы существовать наши тела и все сферы промышленности. Вы помните про электролиты крови? Благодаря им мы живём. А что насчёт наших машин? С помощью этих знаний мы сможем исправить любую проблему, связанную с аккумулятором, так как теперь понимаем, как поднять плотность электролита в нём.

Всё рассказать невозможно, да мы и не ставили такой цели. Ведь это далеко не всё, что можно рассказать об этих удивительных веществах.

ЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых проводят электрический ток.

НЕЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых не проводят электрический ток.

Диссоциация – распад соединений на ионы.

Степень диссоциации – отношение числа продиссоциированных на ионы молекул к общему числу молекул в растворе.

СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде практически полностью диссоциируют на ионы.

При написании уравнений диссоциации сильных электролитов ставят знак равенства.

К сильным электролитам относятся:

· Растворимые соли (смотри таблицу растворимости );

· Многие неорганические кислоты: HNO 3 , H 2 SO 4 ,HClO 3 , HClO 4 , HMnO 4 , HCl, HBr, HI (смотри кислоты-сильные электролиты в таблице растворимости );

· Основания щелочных (LiOH, NaOH,KOH) и щелочноземельных (Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2) металлов (смотри основания-сильные электролиты в таблице растворимости ).

СЛАБЫЕ ЭЛЕКТРОЛИТЫ в водных растворах лишь частично (обратимо) диссоциируют на ионы.

При написании уравнений диссоциации слабых электролитов ставят знак обратимости.

К слабым электролитам относятся:

· Почти все органические кислоты и вода (Н 2 О);

· Некоторые неорганические кислоты: H 2 S, H 3 PO 4 ,HClO 4 , H 2 CO 3 , HNO 2 , H 2 SiO 3 (смотри кислоты-слабые электролиты в таблице растворимости );

· Нерастворимые гидроксиды металлов (Mg(OH) 2 ,Fe(OH) 2 , Zn(OH) 2) (смотри основания- c лабые электролиты в таблице растворимости ).

На степень электролитической диссоциации влияет ряд факторов:

    природа растворителя и электролита : сильными электролитами являются вещества с ионными и ковалентными сильно-полярными связями; хорошей ионизирующей способностью, т.е. способностью вызывать диссоциацию веществ, обладают растворители с большой диэлектрической проницаемостью, молекулы которых полярны (например, вода);

    температура : поскольку диссоциация - процесс эндотермический, повышение температуры повышает значение α;

    концентрация : при разбавлении раствора степень диссоциации возрастает, а с увеличением концентрации - уменьшается;

    стадия процесса диссоциации : каждая последующая стадия менее эффективна, чем предыдущая, примерно в 1000–10 000 раз; например, для фосфорной кислоты α 1 > α 2 > α 3:

H3PО4⇄Н++H2PО−4 (первая стадия, α 1),

H2PО−4⇄Н++HPО2−4 (вторая стадия, α 2),

НPО2−4⇄Н++PО3−4 (третья стадия, α 3).

По этой причине в растворе данной кислоты концентрация ионов водорода наибольшая, а фосфат-ионов РО3−4 - наименьшая.

1. Растворимость и степень диссоциации вещества между собой не связаны. Например, слабым электролитом является хорошо (неограниченно) растворимая в воде уксусная кислота.

2. В растворе слабого электролита меньше других содержится тех ионов, которые образуются на последней стадии электролитической диссоциации

На степень электролитической диссоциации влияет также добавление других электролитов : например, степень диссоциации муравьиной кислоты

HCOOH ⇄ HCOO − + H +

уменьшается, если в раствор внести немного формиата натрия. Эта соль диссоциирует с образованием формиат-ионов HCOO − :

HCOONa → HCOO − + Na +

В результате в растворе концентрация ионов НСОО– повышается, а согласно принципу Ле Шателье, повышение концентрации формиат-ионов смещает равновесие процесса диссоциации муравьиной кислоты влево, т.е. степень диссоциации уменьшается.

Закон разбавления Оствальда - соотношение, выражающее зависимость эквивалентной электропроводностиразбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь - константа диссоциации электролита, - концентрация, и - значения эквивалентной электропроводности при концентрации и при бесконечном разбавлении соответственно. Соотношение является следствием закона действующих масс и равенства

где - степень диссоциации.

Закон разбавления Оствальда выведен В.Оствальдом в 1888 году и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

Электролитическая диссоциация воды. Водородный показатель рН Вода представляет собой слабый амфотерный электролит: Н2О Н+ + ОН- или, более точно: 2Н2О= Н3О+ + ОН- Константа диссоциации воды при 25оС равна: Такое значение константы соответствует диссоциации одной из ста миллионов молекул воды, поэтому концентрацию воды можно считать постоянной и равной 55,55 моль/л (плотность воды 1000 г/л, масса 1 л 1000 г, количество вещества воды 1000г:18г/моль=55,55 моль, С=55,55 моль: 1 л =55,55 моль/л). Тогда Эта величина постоянная при данной температуре (25оС), она называется ионным произведением воды KW: Диссоциация воды – процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100оС значения 10-13. В чистой воде при 25оС концентрации ионов водорода и гидроксила равны между собой: = = 10-7 моль/л Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными. Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10-7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10-14. Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если = 10-3 моль/л, то = KW/ = 10-14/10-3 = 10-11 моль/л, или, если = 10-2 моль/л, то = KW/ = 10-14/10-2 = 10-12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды. На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями. Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода: рН = - lg Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила: рОН = - lg Легко показать, прологарифмировав ионное произведение воды, что рН + рОН = 14 Если рН среды равен 7 - среда нейтральная, если меньше 7 - кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 – среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила.

Слабые электролиты

Слабые электролиты - вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе. К слабым электролитам относятся:

1) почти все органические кислоты (CH 3 COOH, C 2 H 5 COOH и др.);

2) некоторые неорганические кислоты (H 2 CO 3 , H 2 S и др.);

3) почти все малорастворимые в воде соли, основания и гидроксид аммония Ca 3 (PO 4) 2 ; Cu(OH) 2 ; Al(OH) 3 ; NH 4 OH;

Они плохо проводят (или почти не проводят) электрический ток.

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации выражается в долях единицы или в процентах (a = 0,3 – условная граница деления на сильные и слабые электролиты).

Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H 2 O) на одну молекулу растворенного вещества. По принципу Ле-Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.

Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

HAn = H + + An - .

Константа равновесия К р этой реакции и есть константа диссоциации К д:

К д = . / . (10.11)

Если выразить равновесные концентрации через концентрацию слабого электролита С и его степень диссоциации α, то получим:

К д = С. α . С. α/С. (1-α) = С. α 2 /1-α. (10.12)

Это отношение называют законом разбавления Оствальда . Для очень слабых электролитов при α<<1 это уравнение упрощается:

К д = С. α 2 . (10.13)

Это позволяет заключить, что при бесконечном разбавлении степень диссоциации α стремится к единице.

Протолитическое равновесие в воде:

,

,

При постоянной температуре в разбавленных растворах концентрация воды в воде постоянна и равна 55,5 , ()

, (10.15)

где K в – ионное произведение воды.

Тогда =10 -7 . На практике из-за удобства измерения и записи используют величину – водородный показатель, (критерий) силы кислоты или основания. По аналогии .

Из уравнения (11.15): . При рН=7 – реакция раствора нейтральная, при рН<7 – кислая, а при pH>7 – щелочная.

При нормальных условиях (0°С):

, тогда

Рисунок 10.4 - pH различных веществ и систем

10.7 Растворы сильных электролитов

Сильные электролиты - это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl, HBr, HI, HClO 4 , H 2 SO 4 ,HNO 3) и сильные основания (LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH) 2 ,Sr(OH) 2 ,Ca(OH) 2).

В растворе сильного электролита растворённое вещество находится, в основном, в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

Принципиальное отличие сильных электролитов от слабых состоит в том, что равновесие диссоциации сильных электролитов полностью смещено вправо:

H 2 SO 4 = H + + HSO 4 - ,

а потому константа равновесия (диссоциации) оказывается величиной неопределённой. Снижение электропроводности при увеличении концентрации сильного электролита обусловлено электростатическим взаимодействием ионов.

Голландский ученый Петрус Йозефус Вильгельмус Дебай и немецкий ученый Эрих Хюккель, предложив модель, которая легла в основу теории сильных электролитов, постулировали:

1) электролит полностью диссоциирует, но в сравнительно разбавленных растворах (С М = 0,01 моль. л -1);

2) каждый ион окружён оболочкой из ионов противоположного знака. В свою очередь, каждый из этих ионов сольватирован. Это окружение называется ионной атмосферой. При электролитическом взаимодействии ионов противоположных знаков необходимо учитывать влияние ионной атмосферы. При движении катиона в электростатическом поле ионная атмосфера деформируется; она сгущается перед ним и разрежается позади него. Эта асимметрия ионной атмосферы оказывает тем более тормозящее действие движению катиона, чем выше концентрация электролитов и чем больше заряд ионов. В этих системах становится неоднозначным понятие концентрации и должно заменяться активностью. Для бинарного одно-однозарядного электролита КatAn = Kat + + An - активности катиона(а +) и аниона (а -) соответственно равны

а + = γ + . С + , а - = γ - . С - , (10.16)

где С + и С - - аналитические концентрации соответственно катиона и аниона;

γ + и γ - - их коэффициенты активности.

(10.17)

Определить активности каждого иона в отдельности невозможно, поэтому для одно-однозарядных электролитов пользуются средними геометрическими значениями активностей я

и коэффициентов активностей.

error: