Y 4 производная. Производная функции. Производная показательной функции

Вычисление производной - одна из самых важных операций в дифференциальном исчислении. Ниже приводится таблица нахождения производных простых функций. Более сложные правила дифференцирования смотрите в других уроках:
  • Таблица производных экспоненциальных и логарифмических функций
Приведенные формулы используйте как справочные значения. Они помогут в решении дифференциальных уравнений и задач. На картинке, в таблице производных простых функций, приведена "шпаргалка" основных случаев нахождения производной в понятном для применения виде, рядом с ним даны пояснения для каждого случая.

Производные простых функций

1. Производная от числа равна нулю
с´ = 0
Пример:
5´ = 0

Пояснение :
Производная показывает скорость изменения значения функции при изменении аргумента. Поскольку число никак не меняется ни при каких условиях - скорость его изменения всегда равна нулю.

2. Производная переменной равна единице
x´ = 1

Пояснение :
При каждом приращении аргумента (х) на единицу значение функции (результата вычислений) увеличивается на эту же самую величину. Таким образом, скорость изменения значения функции y = x точно равна скорости изменения значения аргумента.

3. Производная переменной и множителя равна этому множителю
сx´ = с
Пример:
(3x)´ = 3
(2x)´ = 2
Пояснение :
В данном случае, при каждом изменении аргумента функции (х ) ее значение (y) растет в с раз. Таким образом, скорость изменения значения функции по отношению к скорости изменения аргумента точно равно величине с .

Откуда следует, что
(cx + b)" = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).


4. Производная переменной по модулю равна частному этой переменной к ее модулю
|x|" = x / |x| при условии, что х ≠ 0
Пояснение :
Поскольку производная переменной (см. формулу 2) равна единице, то производная модуля отличается лишь тем, что значение скорости изменения функции меняется на противоположное при пересечении точки начала координат (попробуйте нарисовать график функции y = |x| и убедитесь в этом сами. Именно такое значение и возвращает выражение x / |x| . Когда x < 0 оно равно (-1), а когда x > 0 - единице. То есть при отрицательных значениях переменной х при каждом увеличении изменении аргумента значение функции уменьшается на точно такое же значение, а при положительных - наоборот, возрастает, но точно на такое же значение.

5. Производная переменной в степени равна произведению числа этой степени и переменной в степени, уменьшенной на единицу
(x c)"= cx c-1 , при условии, что x c и сx c-1 ,определены а с ≠ 0
Пример:
(x 2)" = 2x
(x 3)" = 3x 2
Для запоминания формулы :
Снесите степень переменной "вниз" как множитель, а потом уменьшите саму степень на единицу. Например, для x 2 - двойка оказалась впереди икса, а потом уменьшенная степень (2-1=1) просто дала нам 2х. То же самое произошло для x 3 - тройку "спускаем вниз", уменьшаем ее на единицу и вместо куба имеем квадрат, то есть 3x 2 . Немного "не научно", но очень просто запомнить.

6. Производная дроби 1/х
(1/х)" = - 1 / x 2
Пример:
Поскольку дробь можно представить как возведение в отрицательную степень
(1/x)" = (x -1)" , тогда можно применить формулу из правила 5 таблицы производных
(x -1)" = -1x -2 = - 1 / х 2

7. Производная дроби с переменной произвольной степени в знаменателе
(1 / x c)" = - c / x c+1
Пример:
(1 / x 2)" = - 2 / x 3

8. Производная корня (производная переменной под квадратным корнем)
(√x)" = 1 / (2√x) или 1/2 х -1/2
Пример:
(√x)" = (х 1/2)" значит можно применить формулу из правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Производная переменной под корнем произвольной степени
(n √x)" = 1 / (n n √x n-1)

Калькулятор вычисляет производные всех элементарных функций, приводя подробное решение. Переменная дифференцирования определяется автоматически.

Производная функции — одно из важнейших понятий в математическом анализе. К появлению производной привели такие задачи, как, например, вычисление мгновенной скорости точки в момент времени , если известен путь в зависимоти от времени , задача о нахождении касательной к функции в точке.

Чаще всего производная функции определяется как предел отношения приращения функции к приращению аргумента, если он существует.

Определение. Пусть функция определена в некоторой окрестности точки . Тогда производной функции в точке называется предел, если он существует

Как вычислить производную функции?

Для того, чтобы научиться дифференцировать функции, нужно выучить и понять правила дифференцирования и научиться пользоваться таблицей производных .

Правила дифференцирования

Пусть и — произвольные дифференцируемые функции от вещественной переменной, — некоторая вещественная постоянная. Тогда

— правило дифференцирования произведения функций

— правило дифференцирования частного функций

0" height="33" width="370" style="vertical-align: -12px;"> — дифференцирование функции с переменным показателем степени

— правило дифференцирования сложной функции

— правило дифференцирования степенной функции

Производная функции онлайн

Наш калькулятор быстро и точно вычислит производную любой функции онлайн. Программа не допустит ошибки при вычислениях производной и поможет избежать долгих и нудных расчётов. Онлайн калькулятор будет полезен и в том случае, когда есть необходимость проверить на правильность своё решение, и если оно неверно, быстро найти ошибку.


Навигация по странице.

Производная постоянной.

При выводе самой первой формулы таблицы будем исходить из определения производной функции в точке. Возьмем , где x – любое действительное число, то есть, x – любое число из области определения функции . Запишем предел отношения приращения функции к приращению аргумента при :

Следует заметить, что под знаком предела получается выражение , которое не является , так как в числителе находится не бесконечно малая величина, а именно ноль. Другими словами, приращение постоянной функции всегда равно нулю.

Таким образом, производная постоянной функции равна нулю на всей области определения .

Пример.

Найти производные следующих постоянных функций

Решение.

В первом случае мы имеем производную натурального числа 3 , во втором случае нам приходится брать производную от параметра а , который может быть любым действительным числом, в третьем - производную иррационального числа , в четвертом случае имеем производную нуля (ноль является целым числом), в пятом – производную рациональной дроби .

Ответ:

Производные всех этих функций равны нулю для любого действительного x (на всей области определения)

Производная степенной функции.

Формула производной степенной функции имеет вид , где показатель степени p – любое действительное число.

Докажем сначала формулу для натурального показателя степени, то есть, для p = 1, 2, 3, …

Будем пользоваться определением производной. Запишем предел отношения приращения степенной функции к приращению аргумента:

Для упрощения выражения в числителе обратимся к формуле :

Следовательно,

Этим доказана формула производной степенной функции для натурального показателя.

Следует рассмотреть два случая: при положительных x и отрицательных x .

Сначала будем полагать . В этом случае . Выполним логарифмирование равенства по основанию e и применим свойство логарифма:

Пришли к неявно заданной функции. Находим ее производную:

Осталось провести доказательство для отрицательных x .

Когда показатель p представляет собой четное число, то степенная функция определена и при , причем является четной (смотрите раздел ). То есть, . В этом случае и также можно использовать доказательство через логарифмическую производную.

Когда показатель p представляет собой нечетное число, то степенная функция определена и при , причем является нечетной. То есть, . В этом случае и логарифмическую производную использовать нельзя. Для доказательства формулы в этом случае можно воспользоваться правилами дифференцирования и правилом нахождения производной сложной функции:

Последний переход возможен в силу того, что если p - нечетное число, то p-1 либо четное число, либо нуль (при p=1 ), поэтому, для отрицательных x справедливо равенство .

Таким образом, формула производной степенной функции доказана для любого действительного p .

Пример.

Найти производные функций .

Решение.

Первую и третью функцию приведем к табличному виду , используя свойства степени, и применим формулу производной степенной функции:

Производная показательной функции.

Вывод формулы производной приведем на основе определения:

Пришли к неопределенности. Для ее раскрытия введем новую переменную , причем при . Тогда . В последнем переходе мы использовали формулу перехода к новому основанию логарифма.

Выполним подстановку в исходный предел:

По определению производной для функции синуса имеем .

Воспользуемся формулой разности синусов:

Осталось обратиться к первому замечательному пределу:

Таким образом, производная функции sin x есть cos x .

Абсолютно аналогично доказывается формула производной косинуса.


При решении задач дифференцирования мы будем постоянно обращаться к таблице производных основных функций, иначе зачем мы ее составляли и доказывали каждую формулу. Рекомендуем запомнить все эти формулы, в дальнейшем это сэкономит Вам массу времени.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Определение производной от функции есть обратная операция интегрированию функции. Для элементарных функций вычислить производную не составляет труда, достаточно воспользоваться таблицей производных. Если же нам необходимо найти производную от сложной функции, то дифференцирование будет уже намного сложнее, потребует большей внимательности и времени. При этом очень легко допустить описку или незначительную ошибку, которая приведет к окончательному неверному ответу. Поэтому всегда важно иметь возможность проверить своё решение. Это вы можете сделать с помощью данного онлайн-калькулятора, который позволяет находить производные от любых функций онлайн с подробным решением бесплатно, без регистрации на сайте. Нахождение производной функции (дифференцирование) это отношение приращения функции к приращению аргумента (численно производная равна тангенсу угла наклона касательной к графику функции). Если необходимо вычислить производную от функции в конкретной точке, то нужно в полученном ответе вместо аргумента x подставить его численное значение и рассчитать выражение. При решении производной онлайн вам необходимо ввести функцию в соответсвующее поле: при этом аргументом должна быть переменная x , поскольку дифференцирование идёт именно по нему. Для вычисления второй производной нужно продифференцировать полученный ответ.

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

error: