Влияние факторов внешней среды на состояние здоровья. Влияние неблагоприятных факторов внешней среды. Ингибиторы ферментов – это вещества, которые

/. Повышенная и пониженная температура воз­духа и ограждений.

Производственные помещения делят на: холод­ные, имеющие нормальную температуру и горячие цехи. К цехам с незначительным тепловыделениям от­носят такие, в которых тепловыделения от оборудо­вания, материалов, людей и ингаляции не превыша­ют 20 ккал на 1 м 3 помещения в час.

Если тепловыделение превышает указанную вели­чину, то цехи относят к горячим.

Особенно большие тепловыделения встречаются в металлургии (доменные, мартеновские и прокатные цехи), машиностроении (литейные, кузнечные, терми­ческие цехи), текстильной промышленности (красиль­ные и сушильные цехи), швейной промышленности (утюжные), на хлебозаводах, стекольном производ­стве и т.д. Для горячих цехов особо важное значение имеет отдача тепла излучением. Температура нагре­тых, раскаленных и расплавленных тел, с которыми приходится встречаться в горячих цехах, достигает сотен и даже тысяч градусов (температура плавления стали 1800°). Тепло, получаемое от перечисленных источников за счет инфракрасной реакции, может быть столь значительным, что температура воздуха рабочих помещений может достигать 30-40° и даже более.

В ряде производств работа проводится при пониженной температуре воздуха.

На пивоваренных заводах в подвальных отделе­ниях при температуре +4-7°, в холодильниках - от О до -20°.

Многие работы производятся в неотапливаемых помещениях (склады, элеваторы) или на открытом воздухе (строители, лесозаготовки, сплав леса, карье­ры, открытые разработки угля и руды и т.д.).

2. Повышенная или пониженная влажность.

Встречается в прачечных, красильных цехах текс­тильных фабрик, на химических предприятиях и т.д. Особенно неблагоприятные условия создаются, если испаряющиеся жидкости нагреваются и кипят.

В этих случаях абсолютная влажность воздуха помещения может достигать максимальной влажнос­ти при t° поверхности кожи, т.е. физиологический дефицит насыщения будет равен нулю и испарение пота станет невозможным. Однако это ни в коей сте­пени не задерживает процесса выделения пота (не эффективного) и вызываемого им обезвоживания организма. Так, в воздухе, насыщенном влагой, при t=35° выделение пота может достигать 3,5 л/час.

3. Повышенное или пониженное атмосферное давление.

Связано с работой водолазов, кессонными рабо­тами, работой в авиации и горными работами.

4. Чрезмерные шум и вибрация.

Шум является одним из наиболее распространен­ных факторов внешней среды. Некоторые техноло­гические процессы (например, испытание автомото­ров, работа на ткацких станках, клепка, вырубка и обрубка литья, очистка литья в барабанах, штампов­ка и т.д.) сопровождаются резким шумом, оказываю­щим неблагоприятное действие не только на орган слуха, но и на нервную систему рабочего. Сотрясе­ние (или вибрация) представляет колебания упругих тел с частотой меньше 16 Гц/с (инфразвуки) и свыше 20 тыс. Гц/с (ультразвуки).

Как вибрация ощущаются и колебательные дви­жения с частотами более 16 Гц. В этом случае коле­бания воспринимаются и как звук низкой частоты, и как вибрация. Воздействие вибрации наблюдается в основном вследствие широкого применения пневма­тического инструмента: отбойных молотков и перфо-раторов, пневматических зубил, виброуплотнителей и т.д.

5. Запыленность воздуха - промышленная пыль: "-

В условиях производства выделение пыли в подав­ляющем большинстве случаев связано с процессами механического измельчения: бурения, дробления, помола, истирания. Пыль может быть:

а) органической: растительно-древесной (хлопко­вой, льняной, мучной и т.п.), а также животной (шерс­тяной, волосяной, костяной и т.п.);

б)неорганической: металлическая пыль (медная, железная и т.п.), а также минеральная (наждачная, песчаная, кварцевая, асбестовая, цементная, извест­ковая и т.п.).

Часто встречается смешанная пыль (например, минеральная и угольная при добывании каменного угля и т.п.).

Наиболее распространенным профессиональным заболеванием, развивающемся при длительном вды­хании различной пыли, является пневмокониоз, ко­торый характеризуется разрастанием соединительной ткани в дыхательных путях, но главным образом - в легких. Наиболее опасен силикоз.

6. Промышленные яды.

Химические методы все больше внедряются в раз­личные отрасли промышленности - металлургичес­кую, машиностроительную, горнорудную и т.д. Бур­но развивается химическая промышленность. Все более широко применяются инсектофунгациды в сельском хозяйстве.

Количество профессиональных отравлений, осо­бенно острых, на территории нашей страны с каждым годом снижается. Совершенно исчезли случаи массо­вых отравлений окисью углерода и бензина, наблю­давшиеся в 1924-1925 гг. В виде исключения наблю­даются случаи отравления анилином, фосфатом, оки­сью цинка (литейная лихорадка), метиловым спиртом, взрывными газами. Однако хронические профессио­нальные отравления отдельными веществами (свинец, ртуть, марганец, бензин, тетроэтилсвинец и т.д.) еще не изжиты и борьба с ними остается одной из важ­нейших задач гигиены труда.

7. Бактериальное загрязнение среды.

Вызывает профессиональные инфекции, распро­страняющиеся среди работающих в контакте с тем или иным инфекционным началом. В одних случаях бо­лезнь возникает в результате контакта людей с боль­ными животными (зоотехники, ветеринары и т.д.), в других - с инфекционным материалом: кожей, шерс­тью животных, тряпьем, бактериальными культурами (рабочие кожевенных заводов, рабочие утильзаводов, работники микробиологических лабораторий и др.), в третьих - с больными людьми (медицинский пер­сонал, ухаживающий за инфекционными больными).

8. Радиоактивное заражение внешней среды. помещений, инструмента, материалов.

Этому вопросу будут посвящены самостоятельные лекции.

Растения в процессе роста и развития испытывают воздействие неблагоприятных факторов среды, к которым относятся температурные колебания, засуха, избыточное увлажнение, засоленность почв и т. д. Если данные факторы действуют на растения в пределах толерантной зоны и данное воздействие непродолжительное, то не наблюдается существенных нарушений структуры и физиологических функций растений, что обусловлено способностью организмов сохранять относительно стабильное состояние при изменяющихся условиях, то есть поддерживать гомеостаз. Если изменения внешних факторов достаточно велики (выходят за пределы толерантной зоны), возникают достаточно быстро и продолжаются достаточно долго, то данные факторы являются раздражителями. Раздражитель - это любое внешнее воздействие, достигшее пороговой силы. Способность живых структур отвечать на действие раздражителей носит название раздражимости . Наличие свойства раздражимости позволяет клеткам приспосабливаться к среде и тем самым защищать и сохранять свою жизнь. Именно поэтому К. Бернар назвал раздражимость "первым двигателем жизненных функций живого" .

В естественной среде обитания растения находятся в условиях постоянно изменяющихся факторов: биологических (вирусы, бактерии, грибы, конкуренция с другими растениями, влияние животных и др.); химических (вода, элементы питания, гормоны, газы, гербициды, инсектициды, фунгициды и др.); физических (освещенность, температура, излучение, механические факторы и др.) Одной из отличительных особенностей среды, в которой развивается растение, является ее непостоянство. Развитие растения приспособлено не к какому-либо одному фактору внешней среды, а к определенному сочетанию, комплексу условий.

Следует иметь в виду, что в ряде случаев повреждение организма, вызванное факторами физической природы, опосредуется химическими агентами, возникающими в растении при действии на него физического фактора. С медиаторами химической природы связано действие ионизирующей радиации, высокой температуры и ряд других физических факторов. По физиологическому значению факторы среды делят на адекватные и неадекватные. Адекватные - это естественные факторы, сопутствующие виду в процессе его эволюции, к восприятию которых он приспособлен и чувствительность к которым у данных организмов очень высока. Неадекватные - это искусственные факторы, которые не могли принимать участия в становлении вида и для восприятия которых клетки специально не приспособлены. В связи с этим реакции на неадекватные факторы, даже если они действуют в небольших дозах, могут привести к повреждениям клеток и тканей.

Действие фактора может быть длительным (например, атмосферная засуха, продолжительное нахождение растений в условиях засоления и т. д.) либо резкое повышение напряженности неблагоприятных факторов осуществляется за сравнительно короткий промежуток времени (например, суховей, резкое понижение температуры и т. д.). Ответные реакции на хроническое действие фактора и на стрессовые условия различны.

Клетка, чтобы жить и нормально функционировать, должна четко реагировать на сигналы внешней среды. Способность организмов реагировать соответствующим образом на внешние раздражители, на сигналы извне, следует рассматривать как необходимое условие приспособления клеток к окружающей среде. Для восприятия внешних сигналов клетка обладает набором необходимых рецепторов, в большинстве случаев вмонтированных в плазматическую мембрану или находящихся в протоплазме. Сигналы, которые имеют физическую, химическую и биологическую природу, клетки воспринимают со стороны внешней среды или от соседних клеток и преобразуют их в различные внутриклеточные биохимические процессы. Способность клеточных структур воспринимать определенные сигналы и их объемы и реагировать на них в значительной степени зависит от компетенции клетки.

Компетентность клетки - способность ее реагировать определенным образом на внешний индуктор - определяется наличием рецепторных молекул и их соответствием факторам среды. Кроме того, компетентная клетка обладает определенным потенциалом ответа на различные внешние воздействия. Компетентность устойчивых клеток определяется соответствием их внутренней структуры и комбинации внешних условий. При изменении напряженности факторов среды происходят изменения структурной организации и метаболических процессов в клетке с определенной скоростью и направленностью, соответствующие данным условиям.

В многоклеточном организме клетки разных типов в разные моменты времени достигают состояния компетенции для ответа на определенные факторы среды. После того как клетка становится компетентной и отвечает на определенный стимул, она изменяет свое состояние и начинает проявлять новую компетенцию (либо воспринимает другие сигналы, либо те же сигналы, но в другом объеме). Временные механизмы компетенции основываются на колебательном поведении регуляторных систем и на пластичности внутриклеточных обменов. Следовательно, компетентность клетки определяется количеством, локализацией, структурой рецепторов и потенциалом ответа на индуцирующее воздействие. Рецепторами называют специфические структуры клетки белковой или небелковой природы (лектины, фоторецепторы, хеморецепторы, механорецепторы, гормональные рецепторы).

Мембрана с помощью своих рецепторов "анализирует" и "качественно оценивает" химические и физические факторы среды и перекодирует сигналы внешней среды на язык, понятный внутриклеточным процессам Связывание раздражителя с рецептором сопровождается конформационными изменениями рецепторных молекул, которые передают сигнал следующей инстанции языком конформационных перестроек. Последующие превращения сигналов зависят от природы клеток и от свойств раздражителя.

Стандартной реакцией мембран на внешние раздражители является деполяризация - потеря заряда или изменение знака заряда, в результате чего возникает потенциал действия и изменяются свойства мембранных компонентов. Высокоамплитудный потенциал действия может быть вызван действием температуры, света, электрической стимуляции и некоторыми химическими соединениями . В отсутствие раздражителей растительная клетка имеет отрицательный потенциал покоя (от - 50 до - 200 мВ ), протоплазма заряжена отрицательно по отношению к наружной поверхности. Причина этого - неравномерное распределение ионов: внутри клетки находится больше, чем снаружи, ионов Cl - и K + но меньше Ca 2+ . Неравномерное распределение ионов, проявляющееся в форме мембранного потенциала, обусловлено, по- видимому, действием мембранных ионных насосов (переносчиков), ионных каналов и различной подвижностью ионов в мембране. В ответ на продолжительное раздражение происходит деполяризация мембраны, а затем ее постепенная перезарядка. Возникает потенциал противоположного знака, потенциал действия, который может на время полностью компенсировать потенциал покоя или обусловить появление потенциала с обратным знаком. Потенциал действия вначале развивается с выходом Cl - из клетки и поступлением Ca 2+ в клетку. Затем начинается более медленный процесс - выход из клетки ионов K + , в результате снимается потенциал действия и восстанавливается потенциал покоя, сначала с иным распределением ионов, чем до раздражения. Затем восстанавливается исходное распределение ионов при участии переносчиков (K + и Cl - поступают внутрь клетки, а Ca 2+ наружу). Независимо от природы раздражения потенциал действия имеет двухфазный характер. Однако под влиянием различных агентов могут изменяться такие параметры потенциала действия, как амплитуда, длина волны, время наступления ответной реакции. Установлено, что все растения способны при определенных условиях генерировать потенциал действия. Латентный период потенциала действия у растений - от долей до сотен секунд, а его величина может достигать 100 - 150 мВ . В многоядерной водоросли Nitella высокоамплитудный потенциал действия может быть вызван действием температуры, света и т. д. У насекомоядного растения (росянки) и мимозы механический стимул, воспринимаемый специализированными чувствительными волосками, приводит к изменению тургорного давления в клетках, и в результате в одном случае захлопывается ловушка, а в другом - спадаются листья. Потенциал действия, генерируемый в эффекторных клетках, по своим параметрам подобен наблюдаемому в нервно-мышечных системах. Распространяющиеся потенциалы действия растений и животных имеют много общего, однако у растений они протекают медленнее. Скорость распространения потенциала действия у мимозы 4 см/с , у большинства растений 0,08 - 0,5 см/с .

Электрический потенциал, по-видимому, участвует в транспорте сигналов внешней среды и запуске внутриклеточных процессов. Например, резкие изменения условий существования в зоне корней индуцируют одиночный импульс, который, достигая листьев, вызывает в них усиление газообмена и ускорение транспорта ассимилятов по проводящим пучкам. При сильном раздражении верхушек побега (0,5 M KCl, холодная вода и др.) одиночный импульс ускоряет поглощение корнями калия и фосфора. Эти данные указывают на существование у растений быстрой электрической связи между отдельными клетками и тканями.

В настоящее время делаются попытки выявить молекулярные основы восприятия сигналов и всю сопряженную последовательность событий, связанных с усилением и трансформацией данных сигналов через систему посредников.

Известно, что кальций повышает устойчивость растений к различным стрессам (высокие и низкие температуры, анаэробиоз, понижение pH, заболевание). Д. Марме с сотрудниками проведены обстоятельные исследования возможного функционирования кальция как вторичного посредника в растительных клетках. Они показали, что характер распределения Ca 2+ в клетках колеотилей кукурузы зависит от света: при освещении увеличивалась концентрация свободного кальция в цитозоле клетки, что сопровождалось повышением активности НАД-киназы.

Очевидно, кальций как вторичный посредник воспринимает информацию первичного сигнала (света) и регулирует таким путем биохимические процессы (в частности, активность НАД-киназы).

Концентрация свободного Ca 2+ в цитоплазме растительных и животных клеток низка (10 -8 - 10 -6 M ). Во внутриклеточных структурах (митохондриях, эндоплазматическом ретикулуме) концентрация свободных ионов Ca 2+ превышает 10 -3 M . В животных клетках такая разница в концентрации кальция поддерживается мембранными Ca 2+ -АТФазами, системой Na + /Ca 2+ обмена и, возможно, Ca 2+ -транспортирующей системой митохондрий. В растительных клетках при возникновении потенциала действия или при деполяризации мембран Ca 2+ поступает в клетку извне и (или) освобождается из внутриклеточных резервуаров (цистерн ЭПР, митохондрий, вакуолей). В работах ряда исследователей показано, что Ca 2+ -АТФаза, локализованная в плазматических мембранах, осуществляет обмен Ca 2+ на протоны (Ca 2+ /H + -антипорт). В плазмалемме клеток имеются потенциалзависимые кальциевые каналы, которые открываются при деполяризации мембраны. В ЭПР также имеются кальциевые каналы, сходные с каналами плазматических мембран, причем движение Ca2+ в них направлено из цистерн ЭПР в цитозоль. Кроме того, в мембранах ЭПР растительных клеток обнаружена Ca 2+ -АТФаза, транспортирующая кальций из цитозоли во внутриклеточное депо (цистерны ЭПР). Концентрация свободного кальция в строме хлоропластов низкая, но она увеличивается при освещении. Значительная часть Ca 2+ содержится в клеточных стенках растений (в форме нектатов, карбонатов, сульфатов) и в вакуолях (в форме оксалата).

Изменение в концентрации Ca 2+ в цитозоле клеток играет существенную роль в механизмах движения протоплазмы, делении клеток, секреторной активности некоторых растительных тканей.

Таким образом, кальций, поступая из внешней среды или освобождаясь из внутриклеточных комиартментов, выступает в роли внутриклеточного медиатора, индуцирующего ряд физиологических процессов.

Кальций растительных клеток может связываться с кальмодулином и другими Ca 2+ - связывающими белками. Кальмодулин - низкомолекулярный белок (Мм 16700) с высоким содержанием кислых аминокислот. Он имеет четыре участка, обладающих высоким сродством к Ca 2+ . Кальмодулин обнаружен в митохондриях, хлоропластах, микросомах и клеточных стенках. В цитозольной фракции имеется значительное количество этого белка (90%). Активируясь Ca 2+ (10 -6 M), кальмодулин регулирует активность Ca 2+ -АТФазы, НАД-киназы, НАД-оксидоредуктазы, протеинкиназ, липаз.

Многие реакции, индуцируемые фотохромом дальним красным (Ф730) также контролируются ионами кальция. C. Po (Ronx) предполагает следующую последовательность событий после поглощения клетками растений квантов красного света: образование Ф 730 из Ф 660 →возрастание концентрации ионов кальция в цитоплазме клеток→связывание ионов кальция кальмодулином и непосредственное действие повышенных концентраций Ca 2+ на функции клеток→связывание активированного кальмодулина с зависимыми от него ферментами и активация данных белков .

Следовательно, растительные клетки располагают механизмами для поддержания определенного уровня свободных ионов кальция в цитозоле и функционирования Ca 2+ в качестве вторичного посредника в регуляции метаболизма.

В качестве другой сигнальной системы рассматривается ц-АМФ. У животных организмов циклические нуклетиды (ц-АМФ, ц-ГМФ) играют весьма существенную роль в системе внутриклеточной регуляции. Аденилатциклазная ферментная система отвечает за синтез сравнительно простого нуклеотида - циклического аденозинмонофосфата (ц-АМФ), способного активировать многие внутриклеточные ферменты. По своему строению ц-АМФ близок к АТФ. Он образуется из АТФ путем отделения двух фосфатных групп и последующего замыкания оставшейся фосфатной группировки в кольцо (отсюда и название - циклическая АМФ). Эта реакция катализируется аденилатциклазой, которая расположена на внутренней поверхности мембран и работает в присутствии фосфолипидов и ионов магния.

Действие экзогенных факторов может проявляться через циклические нулеотиды. В частности, Г. Мор с сотрудниками показал, что активация фитохрома красным светом сопровождается повышением в этиолированных проростках белой горчицы уровня ц-АМФ в два раза . Воздействие факторов среды направлено при этом на мембрану. Начинает функционировать аденилатциклазная система (рис. 1), синтезируются циклические нуклеотиды, которые изменяют структурно-функциональное состояние хроматина, матричную активность ДНК, интенсивность новообразования белков-ферментов. В 1971 г. Т. Ленген (T. Langan) показал возможную связь ц-АМФ с регуляцией активности генома. Было показано, что ц-АМФ стимулирует фосфорилирование гистонов препаратами гистон-киназ, что приводит к активации синтеза РНК на матрице ДНК. Кроме того, ц-АМФ действует как аллостерический эффектор по отношению к протеинкиназам, которые катализируют такие реакции модификации, как фосфорилирование ядерных, цитоплазматических и мембранно-связанных белков . В настоящее время выделен и очищен белок, проявляющий сродство как к ц-АМФ, так и к цитокининам. В связи с этим полагают, что существует определенная связь между циклическими нуклеотидами и фитогормонами.

Таким образом, ц-АМФ является, по-видимому, "вторичным мессанджером" в цепи событий от рецепции сигналов внешней среды до изменения активности гормонального, ферментативного и генетического аппарата клетки. Связь фитохрома с синтезом ц-АМФ объясняет многостороннее влияние этого пигмента на разные звенья метаболизма, включая синтез РНК и белка.

Японские исследователи показали, что клетки культуры моркови синтезируют фитоалексины в ответ на грибную инфекцию . Как полагают авторы, этот ответ опосредован другой сигнальной системой - фосфатидилинозитольной, включающей кальмодулинзависимые процессы. В растительных клетках установлено наличие системы фосфорилированных инозиголов. Инозитол-1,4,5-трифосфат (ИТФ) вызывает выход Ca 2+ из внутриклеточных компартментов. ИТФ вместе с кальцием участвует в передаче сигналов извне внутрь клетки (рис. 1). Внешний сигнал связывается с рецептором, который через ряд промежуточных соединений активирует фосфодиэстеразу (ФДЭ). Данный фермент расщепляет фосфатидилинозитол-1,4,5-трифосфат (ФИТФ), в результате чего образуется инозитол-1,4,5-трифосфат и диацилглицерин. ИТФ растворим в воде, поэтому он диффундирует в цитоплазму и вызывает освобождение кальция из ЭПР, митохондрий и других компартментов. Высвобожденный Ca 2+ активирует кальмодулинзависимую протеинкиназу, которая фосфорилирует внутриклеточные белки и вызывает изменение скорости и направленности метаболических процессов.

В общем виде сигнальная система клеток состоит из рецепторов, воспринимающих сигнал и функционально связанных с рецепторами вторичных посредников (Ca 2+ , кальмодулин, ц-АМФ, ИТФ, протеинкиназа). Эти внутриклеточные посредники служат для усиления и передачи воспринимаемого сигнала и запуска метаболических процессов.

Протеинкиназная активность обнаружена практически во всех клетках и тканях животных организмов. Ферменты, подобные по ряду свойств протеинкиназам. С животных организмов, обнаружены в клетках пшеницы и тыквы и в проростках щирицы. В последние годы в литературе появились сведения о наличии в растительных клетках Ca 2+ , фосфолипидзависимых протеинкиназ. Они обнаружены во фракции плазматических мембран клеток корней гороха и в цитозольной фракции, полученной из гипокотелей и стеблей тыквы . Протеинкиназы - ферменты, осуществляющие фосфорилирование белков по строго определенным группам серина, треонина и тирозина. Присоединение фосфата приводит к изменению структуры белковой молекулы и ее функциональной активности. Фосфорилированию подлежат структурные, транспортные и регуляторные белки. Протеинкиназа активируется кальцием (10 -6 -3.10 -7 M ), фосфолипидами (фосфатидилсерин) и диацилглицерином (табл. 1).

Регуляция протеинкиназной активности может быть различной в зависимости от качества воспринимаемого сигнала и функциональных особенностей тканей. Она может зависеть или не зависеть от циклических нуклеотидов, быть чувствительной или нечувствительной к кальмодулину и кальцию. Активированная протеинкиназа переносит фосфатную группу с АТФ на белки, которые в свою очередь активируют другие ферменты. Биологический смысл этого каскада активации ферментов состоит в том, что он подобно каскадным усилителям, применяемым в радиотехнике, многократно усиливает первоначальный сигнал, который индуцирует целый комплекс защитно-приспособительных реакций. В результате включается синтез адаптивных белков (например, стрессовых), протекторных соединений (пролин, полиамины, олиго- и полисахариды и др.), обнаруживаются изменения на уровне мембранных структур (меняется их липидный и белковый комплекс), возникают защитные системы на структурно-метаболическом уровне, а затем следуют морфоструктурные изменения.

Например, чтобы свет оказал свое физиологическое действие на растение, он должен быть поглощен рецептором (фитохромом или другими пигментами). Одной из реакций, находящейся под контролем фитохрома, является свертывание листьев мимозы с наступлением темноты. Весь процесс завершается через 5 мин - это время слишком мало, чтобы мог осуществляться контроль на уровне транскрипции. Данный факт, а также то обстоятельство, что какое-то количество фитохрома оказывается прочно связанным с мембранами, привели к предположению, что первичное действие фитохрома сводится к изменению свойств мембраны. Молекула пигмента, поглотившего квант света, переходит в возбужденное состояние, взаимодействует с мембраной клетки и вызывает изменение ее конформации. Изменение состояния мембраны в одном месте может распространиться и на другие ее участки. В результате изменится проницаемость мембраны, ее заряд, активность связанных с ней ферментов. Все это, в свою очередь, может быть причиной изменения путей общего метаболизма клетки. Медленные реакции в ответ на изменение состояния фитохрома могут быть связаны с процессом транскрипции генов. Пигменты, участвующие в фоторегуляции морфогенеза растений, оказывают при возбуждении их светом непосредственное действие на генный аппарат растений, превращая потенциально активные гены в активные и тем самым способствуя образованию новых информационных РНК и биосинтезу до того времени "запрещенных" белков.

Рецепторный аппарат клетки представляет собой динамическую и, невидимому, высокоселективную систему, обеспечивающую как связь клеток с внешней средой, так и регуляцию их функциональной активности. Специфичность рецепторных систем в соответствии с клеточной специализацией определяет возможность осуществления характерного для данного тина клеток ответа на действие различных факторов внешней среды.

Действие любого неблагоприятного экстремального фактора вызывает ряд ответных защитно-приспособительных реакций. Характер ответных реакций в значительной степени зависит от интенсивности действующего фактора. При малой его интенсивности наблюдается нормальная ответная реакция (т. е. усиление или ослабление внутриклеточных физиологических процессов). При значительной интенсивности действующего фактора организм начинает защищаться от неблагоприятных воздействий и для этого мобилизует все имеющиеся у него потенции. При этом в организме могут возникнуть и новые свойства, отсутствующие до действия данного фактора.

Еще в 1900 г. индийский физик и физиолог растений Джегдиш Чандра Бос пришел к выводу об общности ответных реакций у животных и растений. Представления об однотипности ответных реакций организмов на окружающие условия получили развитие в работах Д. Н. Насонова и В. Я. Александрова. Было постулировано, что реакция протоплазмы клетки на окружающие условия монотонна. Она выражается в том, что в ответ на воздействия в протоплазме клеток растений и животных происходят всегда одни и те же изменения в следующей последовательности: 1) уменьшается степень дисперсности протоплазмы; 2) повышается проницаемость протоплазмы; 3) денатурируют белки; 4) происходят паранекротические изменения ядра; 5) коагулирует протоплазма .

Эти однотипные, монотонные, появляющиеся при любом повреждении изменения могут полностью исчезнуть после устранения альтерирующего агента, если действие его не зашло слишком далеко. Неспецифичность этих признаков выражается в том, что они сопутствуют разным способам повреждения и наблюдаются у любых тканевых клеток и одноклеточных организмов. Этот комплекс неспецифических физико-химических признаков повреждения был назван паранекротическим, а состояние клеток, при котором у них развивается комплекс паранекротических изменений, - паранекрозом (паранекроз - "вблизи" или "около" смерти). Смысл этого названия заключается в том, что реакции, возникающие в клетке при раздражении и при повреждении, сходны. В дальнейшем идеи Д. Н. Насонова и В. Я. Александрова были развиты в трудах канадского физиолога Г. Селье . Он ввел понятие стресса в область медицины, но оно стало широко использоваться и в физиологии растений. Г. Селье дает следующее определение этому понятию: "Стресс есть неспецифический ответ организма на любое предъявляемое ему требование". Стресс в понимании фитофизиологов есть некоторое нарушение, вызываемое неблагоприятными условиями .

Изменение проницаемости клеточных мембран, по-видимому, является первичным звеном в ответных реакциях. Проницаемость - способность клеток и тканей поглощать или обмениваться веществами с окружающей средой. Проницаемость мембран может меняться как под действием внутренних условий (в процессах прорастания семян, роста растений и старения клеток и тканей), так и под воздействием различных факторов среды (фитопатогенов, температурных и световых условий, анаэробиоза, избытка тяжелых металлов и т. д.). Значительные изменения проницаемости мембран растительных клеток обнаруживаются при действии абиотических факторов среды. У 4 - 5-дневных проростков пшеницы, фасоли и хлопчатника, погруженных в растворы солей хлористого, сернокислого и углекислого натрия, отмечается значительное увеличение проницаемости мембран корней и происходит усиленное выделение в наружный раствор аминокислот, органических кислот и неорганических ионов. Проницаемость растительных тканей резко меняется и при повышенной температуре среды (45°С). В литературе имеются многочисленные данные, прямо или косвенно свидетельствующие о наличии определенной связи между проницаемостью мембран растительных клеток и морозо- и холодоустойчивостью растений. По данным П. Нобела, проницаемость мембран хлоропластов неустойчивых к холоду растений (томаты, фасоль) при пониженных температурах резко возрастала, в то время как устойчивых (горох, шпинат) - не изменялась . Вышеизложенное позволяет считать, что изменение проницаемости клеточных мембран является общим, первичным звеном неспецифических механизмов ответной реакции растительного организма на внешние воздействия. В настоящее время доказано, что проницаемость растительных тканей может быть использована как показатель устойчивости растений к неблагоприятным условиям внешней среды.

Возникает вопрос: определяется ли устойчивость растений к засухе, морозу, засолению одним общим механизмом или эти механизмы специфичны в каждом случае? На любое воздействие растительный организм отвечает целым комплексом защитно-приспособительных реакций, состоящих как из общих (неспецифических), так и специфических процессов. В работе Б. П. Строгонова показано, что процесс приспособления растений к сульфатному и хлоридному засолению идет неодинаково. Например, на сульфатном засолении транспирация у растений возрастает, а на хлоридном - снижается .

Некоторые исследователи считают, что в основе устойчивости к различным экстремальным факторам лежат неспецифические (однотипные) реакции (В. Я. Александров, Г. В. Удовенко). В. Я. Александров трактует свой большой материал по влиянию температуры на животные и растительные организмы с позиций неспецифической реакции организмов на действие повышенных температур . Другие связывают устойчивость с реакциями специфического характера (Н. А. Максимов, П. А. Генкель)). П. А. Генкель считает, что ответная реакция растения на неблагоприятные условия имеет сложный характер. При адаптационном процессе развертываются защитно-приспособительные реакции как неспецифического, так и специфического характера .

Ю. А. Урманцев следующим образом трактует вопрос о специфичности и неспецифичности ответных реакций растений. "Ответные реакции растений на действие разных неблагоприятных условий, по крайней мере в ряде случаев, могут предстать в виде специфических реализаций одной и той же закономерности". В частности, кривые, описывающие зависимость тех или иных функций растения от действия того или иного неблагоприятного фактора, как правило, имеют одну и ту же форму "колокола". Однако при анализе этих кривых отмечают, что эти формы достоверно отличаются своими амплитудами, высотами. Если исходить из концепции о единой устойчивости растений, то для всех функций растения и всех неблагоприятных условий исследователи получали бы один и тот же "колокол" с одинаковыми параметрами (амплитудами, высотами). По-видимому, специфичность ответных реакций проявляется как составная часть общих, однотипных защитно-приспособительных реакций. Специфичность ответных реакций - особенность проявления общего .

Концепция о том, что ответные реакции растений на неблагоприятные окружающие условия протекают однотипно, сложилась в основном при изучении повреждений и гибели растений. Мнение, что ответная реакция сложнее и состоит как из неспецифических, так и из специфических реакций, возникло при изучении адаптивных изменений, где специфические ответы растения выступают на первый план. При определенной (небольшой) дозе воздействия неблагоприятного фактора, когда возможны адаптивные изменения, наблюдаются наряду с неснецифическими и специфические реакции. При усилении меры воздействия (фактор×время) организм начинает защищаться от неблагоприятного воздействия и мобилизует все имеющиеся у него средства. В последнем случае мы можем не обнаружить специфики в ответных реакциях. И. Н. Андреева и Г. М. Гринева изучали действие повышенной температуры и анаэробиоза на субмикроскопическую структуру митохондрий. Субмикроскопические картины, наблюдавшиеся в результате воздействия этих факторов, резко отличались друг от друга. При действии высокой температуры (45°С) на корни кукурузы происходит набухание митохондрий, просветление матрикса, везикуляция и уменьшение числа крист. При действии анаэробиоза обнаруживаются лентовидные и закрученные кристы, увеличивается их объем, они уплотняются, наблюдается их везикуляция и увеличение числа. При увеличении меры воздействия (в конце воздействия) морфологические картины повреждений сближаются: наблюдается высокая степень набухания митохондрий, полное отсутствие матрикса, сохраняется небольшое число крист-везикул. При действии обоих факторов митохондрии в конце концов разрушались. Фосфорилирующая активность митохондрий сохранялась при малых дозах воздействия температуры и анаэробиоза, а при сильных повреждениях наблюдалось полное разобщение окисления и фосфорилирования .

Соотношение специфических и неспецифических ответных реакций в значительной степени зависит от длительности действующего фактора. При кратковременном действии фактора в высокой дозе наблюдаются в основном неспецифические ответные реакции. Например, мы сходным жестом отдергиваем руку, прикоснувшись к горячему, холодному, колкому предметам. При длительном воздействии стрессового фактора срабатывает большее число метаболических звеньев, некоторые из которых обладают чертами специфичности для данного организма. Постепенное, пролонгированное действие стрессора приводит к включению процессов специализированной адаптации, которые обеспечивают систему надежности функционирования внутриклеточных процессов в экстремальных условиях.

Характер специфической реакции на стрессовые воздействия указывает на природу повреждающего фактора, а при неспецифической - природу действующего сигналу угадать трудно. Неспецифические реакции наблюдаются чаще, чем специфические. Пример специфической реакции - признаки острой недостаточности (или избыточности) элементов питания растений.

Важно отметить, что ответные реакции растений на разные факторы носят колебательный характер. Так, данные, полученные П. С. Беликовым, показывают, что при действии высокой температуры вязкость цитоплазмы вначале уменьшается, а затем увеличивается. Скорость движения цитоплазмы и выход веществ из клетки также меняются волнообразно: вначале наблюдается усиление этих процессов, затем скорость их замедляется . В зависимости от силы повреждающего воздействия меняется характер этих колебаний: амплитуда, длина волны, время наступления пусковой ответной реакции. По мнению В. Я. Александрова, колебательный характер физиологических процессов в клетках при действии раздражителей отражает сложную природу ответных реакций, которые имеют разную направленность. Одни из этих реакций имеют деструктивный характер, другие направлены на сохранение внутриклеточных структур и процессов.

Можно предположить, что специфическое реагирование на действие экстремальных факторов контролируется генетическими механизмами через работу белоксинтезирующего аппарата. Неспецифическое реагирование, по-видимому, не связано с генетическим контролем и в его основе лежит физиологическая пластичность организма (пластичность мембранных компонентов, изменение структуры и активности внутриклеточных белков и пр.). Соотношение специфичности и неспецифичности в устойчивости может варьировать в зависимости от биологических особенностей объекта. В качестве примера рассмотрим два биологических объекта. Огурец как вид сформировался в условиях тропиков; ареал его естественного распространения включает отдельные районы Центральной Азии, характеризующиеся незначительными колебаниями температуры и других факторов среды. При действии экстремальных температур (низких) для сохранения жизнеспособности данных растений в основном срабатывают специфические ответные реакции, которые определяются генетическими потенциями вида. Стабильные факторы в районах Центральной Азии не обеспечили формирования пластичности обмена у данного растительного организма.

В противоположность огурцу становление рода Triticum шло на фоне заметного колебания температуры среды и других факторов. Ареал распространения пшеницы включает огромные территории от Северного полярного круга до южных пределов Австралии, Америки и Африки. Пшеница хорошо приспособлена и к горным условиям и растет на высоте 4 тыс. м над уровнем моря. Можно предположить, что для пшеницы залогом широкого распространения является хорошо развитая система специфического реагирования, подкрепленная механизмами неспецифической устойчивости. Эволюция у пшеницы шла по типу выработки механизмов лабильности мембранных компонентов, пластичности регуляторных механизмов, подвижности структуры и функции внутриклеточных белков, что позволяет пшенице иметь широкий ареал распространения.

Во всех случаях невозможно провести резкую границу между специфическими и неспецифическими реакциями. Кажущаяся неспецифичность физиолого-биохимических и других признаков повреждения не абсолютна; здесь, по-видимому, следует скорее говорить о сходстве явлений, чем об их тождестве, так как на фоне однотипных реакций обычно удается подметить специфические особенности. По-видимому, в сочетании специфического и неспецифического характера ответных реакций заложена возможность реагирования живых систем и развитие их в эволюции.

При изучении процессов устойчивости иногда наблюдаются случаи одновременной устойчивости к двум или нескольким ее видам. П. А. Генкель, анализируя ряд подобных фактов, сформулировал понятие о сопряженной устойчивости, которая может быть положительной или отрицательной. Хорошим примером сопряженной устойчивости является повышение жароустойчивости и солеустойчивости у проса сорта Кремовый, который перед посевом подвергался обработке 1/40 M CaCl 2 . В этом случае проявляется положительная сопряженная устойчивость. Обработки CaCl 2 вызывают повышение вязкости протоплазмы и снижение интенсивности обмена, что способствует большей жаро- и солеустойчивости растений. При меры положительной и отрицательной сопряженной устойчивости приводятся в работах А. Кашлана. Выращенный в вегетационных опытах табак подвергался предпосевному закаливанию против засухи. Было обнаружено повышение засухоустойчивости и одновременно сульфатоустойчивости у растений и понижение хлоридоустойчивости. Более подробный анализ показал, что улучшение роста и продуктивности на сульфатном засолении у закаленных к засухе растений связано не с повышением сульфатоустойчивости, а с их повышенной жароустойчивостью, так как контрольные незакаленные растения сильно снижают свою жароустойчивость на сульфатном засолении почвы. На хлоридном засолении снижение хлоридоустойчивости у закаленных к засухе растений связано с их повышенным метаболизмом, большим поглощением солей и более развитой корневой системой (больший объем и поверхность поглощения корней) .

Неоднократно отмечаемое сходство в реакциях растений на неблагоприятные факторы среды, например на холод и тепло , и наличие положительной сопряженной устойчивости позволили сформулировать вывод, что резистентность растений к различным экстремальным условиям может контролироваться одними и теми же эндогенными факторами . Сходство ответных реакций можно объяснить существованием широкого круга неспецифических приспособительных реакций и тем, что специфическое реагирование на такие экзогенные воздействия, как холод и тепло, сопряжено с системой индуцированного синтеза белка, т. е. осуществляется по единому типу генетической регуляции физиологических процессов. Сходство ответных реакций растений на температурный, водный и солевой стресс определяется, невидимому, тем, что в этих условиях в клетках создается водный дефицит, который может быть устранен с помощью однотипных защитно-приспособительных процессов (усиления синтеза пролива и др.).

Кроме понятия сопряженной устойчивости П. А. Генкель ввел понятие конвергентной устойчивости. Конвергенция - это наблюдаемое сходство различных организмов, вызванное одинаковыми условиями существования - одинаковым давлением отбора. Существуют два типа конвергентной устойчивости: 1) типичная конвергенция, когда устойчивость различных организмов обусловлена одинаковыми условиями существования; 2) нетипичная, когда разные условия приводят к одинаковому результату. Примером нетипичной конвергенции является высокая жароустойчивость древесных пород зимой, связанная с их обезвоживанием и накоплением липидов на поверхности протопласта .

Кроме того, наблюдаются случаи расходящейся нетипичной конвергентной устойчивости, когда одинаковое воздействие приводит к неодинаковому результату.

Для всех организмов, находящихся на различных уровнях организации, можно вычленить некоторые сходные характерные черты в их реакции на внешние воздействия. К ним относятся: 1) способность отвечать на действие раздражителей включением сигнальных систем, которые рецептируют сигнал, усиливают его и запускают ответные физиолого-биохимические процессы; 2) способность сочетать в ответных реакциях признаки неспецифические, в значительной степени не зависящие от природы воздействующего фактора, с признаками специфическими, характерными для данного фактора. Источником специфических ответных реакций является гетерогенная расчлененность систем, источником неспецифичности - взаимосвязанность ее частей, кооперативность их взаимоотношения. Под влиянием раздражителей возникают повреждения, выражающиеся в нарушении структуры и функции клетки. Процессы возбуждения приводят к активации процессов жизнедеятельности клеток. В результате этого действие последующих раздражителей начинает восприниматься клеткой с меньшей силой, появляется закалка. На фоне закалки происходит восстановление - репарация исходных функций и структур.

У высших наземных растений прочный контакт со средой в условиях неподвижного образа жизни вызывает необходимость развития активных приспособительных реакций, совершенствования способов их адаптации к постоянно меняющейся, гетерогенной среде обитания. Исследование защитных реакций необходимо для решения вопросов, связанных с интродукцией, селекцией растений, а также для разработки методов искусственного повышения устойчивости клеток и организмов к биотическим и абиотическим факторам среды.

Приспособляемостью микроорганизмов к неблагоприятным факторам внешней среды является изменчивость - приобретение микроорганизмами признаков, позволяющих им выжить и отли­чающих их от предыдущих поколений.

По диапазону изменчивость микроорганизмов подразделяется:

Внутривидовая;

Видообразующая.

Внутривидовая изменчивость микроорганизмов встречается наиболее часто. При этом, основные видовые признаки бактерий сохраняются (например, приобретение бактериями устойчивости к антибиотикам).

Видообразующая изменчивость микроорганизмов встречается

чрезвычайно редко, при этом происходят глубокие изменения на­следственной структуры (генотипа) микроорганизмов (например, изменение обмена веществ).

Формы проявления изменчивости :

1. Фенотипическая изменчивость или модификация микроорга­низмов (ненаследственная, без изменения генотипа) возникает как ответ клетки на неблагоприятные условия ее существования. Эта адаптивная реакция на внешние раздражители не сопровождается изменением генотипа и поэтому не передается по наследству. Мо­гут измениться морфология (округление, удлинение клетки), куль­туральные свойства (стафилококки не образуют пигмент при не­достатке кислорода), биохимические или ферментативные свой­ства (выработка адаптивных ферментов у эшерихий - фермент лактаза на среде с лактозой). При фенотипической изменчивости кАк правило, через определенное время происходит возврат к ис­ходному состоянию («новый фенотип» утрачивается).

2. Генотипическая изменчивость (наследуемая) - возникает в результате мутаций и генетических рекомбинаций. При этом смена фенотипа связана с изменением генотипа и передается по на­следству. Нет возврата к исходному фенотипу.

Мутации (от лат. mutatio - изменять) - это стойко передаваемые по наследству структурные изменения генов, связанные с реорга­низацией нуклеотидов в молекуле ДНК. При мутациях изменяются участки геномов (т.е. наследственного аппарата).

Бактериальные мутации могут быть спонтанными (самопроиз­вольными) и индуцированными (направленными), т.е. появляются в результате обработки микроорганизмов специальными мутаге­нами (химическими веществами, температурой, излучением и т.д.).

В результате бактериальных мутаций могут отмечаться:

§ изменение морфологических свойств микроорганизмов;

§ изменение культуральных свойств;

§ возникновение у микроорганизмов устойчивости к лекарствен­ным препаратам;

§ ослабление патогенных свойств и др.

К генетическим рекомбинациям относятся рекомбинации ге­нов, которые происходят вследствие трансформации, трансдукции и конъюгации.

Трансформация -передача генетического материала от бак­терии-донора бактерии-реципиенту при помощи изолированной ДНК другой клетки.

Бактерии, способные воспринимать ДНК другой клетки, назы­ваются компетентными.

Состояние компетентности часто совпадает с логарифмиче­ской фазой роста.

Для трансформации необходимо создавать особые условия, например, при добавлении в питательную среду неорганических фосфатов частота трансформации повышается.

Трансдукция - это перенос наследственного материала от бактерии-донора к бактерии-реципиенту бактериофагом.

Например, с помощью бактериофага можно воспроизвести трансдукцию жгутиков, ферментативные свойства, резистентность к антибиотикам, токсигенность и другие признаки.

Конъюгация - передача генетического материала от одной бактерии другой путем непосредственного контакта. Причем про­исходит односторонний перенос генетического материала - от до­нора реципиенту. Необходимым условием для конъюгации явля­ется наличие у донора цитоплазматической кольцевой молекулы ДНК - плазмиды и специфического фактора плодовитости F. У грамотрицательных бактерий обнаружены половые F-волоски, че­рез которые происходит перенос генетического материала. Клетки, играющие роль донора, обозначают F+, а реципиенты – F –- .

3. Промежуточная изменчивость - диссоциация. В однородной популяции бактерий появляются различные по биологическим свойствам клетки, образующие две формы колоний – R (шерохо­ватые, с рваными краями, часто связанные с приобретением бак­териями патогенных свойств) и S (круглые, гладкие, блестящие).

Заключение

На микроорганизмы во внешней среде воздействует огромное количество разнообразных неблагоприятных факторов, что за­ставляет их постоянно совершенствоваться, приспосабливаться и эволюционировать.

Именно неблагоприятные факторы внешней среды являются для микроорганизмов движущей силой видообразования.

Вопросы для самоконтроля

1. Результаты действия факторов внешней среды на микроорганизмы.

2. Какие физические факторы оказывают наибольшее влияние на микроорганизмы?

3. Каков температурный диапазон выращивания разных видов микроорганизмов?

4. В чем сущность лиофильного высушивания микроорганизмов?

5. Опишите опыт Бухнера.

6. Значение осмотического давления для бактерий.

7. На какие группы классифицируют микроорганизмы по отношению к концентрации водородных ионов в среде?

8. Что такое дезинфекция и дезинфектанты?

9. Классификация химических веществ помеханизму противомикробного действия.

10. Какие средства называют антисептиками?

11. Перечислите биологические факторы, негативно воздействующие на микроорганизмы.

12. Какие взаимоотношения между бактериями обуславливает антагонистический симбиоз?

13. Каков механизм действия антибиотиков на бактерии?

14. Назовите возможные механизмы действия пробиотиков.

15. На какие группы подразделяют бактериофаги?

16. Что такое фильтрующая стерилизация?

17. Назовите отличия между фенотипической и генотипической изменчивостью бактерий.


Похожая информация.


Для рассмотрения того, как окружающая среда воздействует на организм человека в течение всей его жизни от рождения до смерти, удобно разделить факторы среды по природе их воздействия на физические, химические , биологические и социальные.

Физические факторы. Человек на протяжении всей своей постнатальной жизни постоянно взаимодействует с двумя основными физическими факторами, к которым организму приходится непрерывно приспосабливаться, - это температура окружающей среды и сила тяжести (гравитация). Реакция организма на оба эти фактора самым непосредственным образом связана с массой, геометрическими размерами и пропорциями тела, которые меняются по мере возрастного развития. Другие физические факторы, также определяющие особенности среды обитания человека, воздействуют на организм независимо от его формы и размеров (например, влажность, атмосферное давление, газовый состав окружающего воздуха, инсоляция и т.п.).

Температура - постоянно действующий фактор переменного значения. Клетки организма нуждаются для своего нормального функционирования в постоянной температуре около 37 °С, изменение температуры на 10 °С в ту или иную сторону способно в 2- 3 раза изменить скорость всех биохимических реакций, причем их согласованность в этом случае будет нарушена. Если температура тела опускается ниже +25 или поднимается выше +42 "С, клетки тела погибают и наступает смерть.

Изменения внешней температуры требуют приспособления организма к этому переменному фактору. В этом случае очень важны размеры и пропорции тела, так как, согласно физическим законам, интенсивность производства тепла в организме пропорциональна его массе, а скорость теплоотдачи пропорциональна площади поверхности тела. Изменение размеров и пропорций, происходящее в результате роста, непосредственно сказывается На балансе продукции и отдачи тепла. Ребенок обладает относительно большой поверхностью тела (т.е. на 1 см 2 поверхности у ребенка приходится меньшее количество его массы), поэтому для него задача вывести избыточное тепло решается легче, чем выработать дополнительное количество тепла. В то же время относительно большая поверхность тела ребенка приводит к тому, что при низкой температуре он быстрее охлаждается.

Повышенная температура среды требует - во избежание перегрева - активации функций, способствующих теплоотдаче: усиливаются поверхностный кожный кровоток, а также легочная вентиляция и потоотделение - все это способствует переносу тепла из «ядра» тела к его поверхности и выделению избыточного тепла в окружающее пространство. Пониженная температура, напротив, требует сохранения тепла в организме: сужаются кожные кровеносные сосуды, снижается активность внешнего дыхания, прекращается потоотделение и усиливается теплопродукция за счет повышения интенсивности метаболизма.

В организме взрослого человека дополнительное тепло при охлаждении образуется главным образом в печени и скелетных мышцах (всем известно, когда холодно, мы начинаем дрожать - это и есть проявление терморегуляторной активности мышц: не производя никакой внешней работы, они непрерывно сокращаются, согревая протекающую через них кровь).

У детей есть орган, специально предназначенный для производства дополнительного тепла, - бурая жировая ткань. Это жировые клетки, которые обильно снабжаются кровью и содержат огромное количество митохондрий. Особенностью митохондрий бурого жира является их способность «сжигать» большое количество жира, не производя АТФ. При этом практически вся высвобождающаяся энергия превращается в тепло. Таким образом, бурая жировая ткань выполняет в детском организме роль своеобразной «печки», которая включается каждый раз, когда ребенку становится холодно. Сигналом для такого включения служит воздействие симпатического отдела ЦНС и ее медиатора норадреналина, который может также поступать из надпочечников. Бурый жир расположен у детей под кожей между лопатками, вдоль крупных шейных сосудов, а также около крупных сосудов внутри грудной клетки и брюшной полости. У взрослых бурая жировая ткань встречается редко, это специальный «детский» орган, исчезающий по мере взросления. Так же ведут себя многие лимфатические железы, обеспечивающие иммунитет (зобная железа, гланды и другие). Перенесенные ребенком острые заболевания (воспаление легких, грипп и другие) могут приводить к уменьшению размеров и активности бурого жира. Поэтому так важно соблюдать комфортный температурный режим для больных и выздоравливающих детей.

Детский организм более чувствителен к изменениям внешней температуры, чем взрослый. Температурный диапазон, в котором человек чувствует себя комфортно, составляет для взрослого от +25 до +30 °С, а для ребенка первого года жизни - от +27 до +33 °С. Защиту от колебаний температуры окружающей среды человеку обеспечивает одежда. Она должна быть такой, чтобы внутри (на поверхности кожи под одеждой) температура приближалась к зоне комфорта. При этом важно, чтобы одежда не препятствовала воздухообмену: ведь кожа должна дышать, а испарения потовых желез должны иметь выход, иначе кожные покровы начинают преть. что часто бывает при неправильном уходе за маленькими детьми.

Механизмы терморегуляции у детей начинают интенсивно развиваться в возрасте 4-5 лет, именно в этом возрасте наиболее эффективны различные закаливающие процедуры, благодаря которым сосудистые реакции ребенка приобретают подвижность, необходимую для эффективного поддержания постоянной температуры тела. Закаливание позволяет ребенку защититься от простуд и повышает общий иммунитет организма.

Гравитация (сила тяжести) - другой постоянно действующий фактор, который связан с массой и формой тела. В отличие от температуры уровень гравитационного воздействия не колеблется, и даже различия в силе тяжести, которые можно с помощью точных физических приборов определить на экваторе и на полюсах Земли, либо на уровне моря и высоко в горах, не столь уж существенны, и организм человека на них практически не реагирует. Однако любое перемещение тела или его части в поле земного тяготения требует специальных усилий по преодолению гравитации, а следовательно, дополнительных затрат энергии. Перемена положения тела (лежа, сидя, стоя) весьма существенно изменяет условия, в которых функционируют вегетативные системы - кровообращение, дыхание, выделение и др. При вертикальном положении тела сердцу приходится выполнять значительно (у взрослого человека - на 15-20%) большую работу по преодолению гидростатического сопротивления столба крови, чтобы обеспечить нормальные условия кровоснабжения тканей, особенно головного мозга. У ребенка, имеющего меньшие размеры тела, изменение его положения в пространстве сказывается в меньшей степени. Именно поэтому кровяное давление у детей в норме существенно ниже, чем у взрослых, меньше также разница между систолическим и диастолическим давлением (правда, кроме геометрических размеров, здесь еще имеет значение эластичность сосудов, которая у детей выше, и их тонус, который у детей ниже, чем у взрослых).

Влажность. Абсолютно сухой, как и 100 % влажный, воздух тяжел для дыхания человека. В пустынях и жарких степях бывает такая сухость воздуха, что дыхание «перехватывает» из-за высыхания слизистых оболочек воздухоносных путей. У детей чувствительность к потере влаги выше, чем у взрослых, что необходимо учитывать, особенно при организации двигательной активности детей в летнюю жару, которая всегда связана с активацией дыхания. В тропических и жарких странах с морским климатом, а также в летние месяцы в районах, где много природных водоемов, наблюдается избыточная влажность, которая также снижает эффективность работы легких. В таких ситуациях умственная и особенно физическая работоспособность снижается, причем у детей в значительно большей степени, чем у взрослых.

Инсоляция и другие формы электромагнитных излучений. Солнечные лучи, попадая на тело человека, вызывают изменение цвета его кожи (загар), который является ответной адаптивной реакцией организма. Темная кожа в меньшей степени пропускает лучистую энергию солнца вглубь тела, защищая клетки от ультрафиолета, способного повредить крупные белковые молекулы. Детская кожа до полового созревания обычно намного менее пигментированная, чем у взрослых, поэтому уровень инсоляции для детей необходимо строго контролировать. Даже взрослый может легко обжечь свои кожные покровы ярким солнцем, особенно вблизи воды (мельчайшие капельки воды действуют как увеличительные стекла, а их испарение на ветру с поверхности тела создает обманчивое ощущение прохлады). Перегрев на солнце (солнечный удар) и солнечный ожог - довольно частые явления, особенно у городских детей, резко меняющих с началом каникул уровень инсоляции своей кожи. Жители сельской местности, как правило, более адаптированы к воздействию солнечных лучей, имеют более смуглую кожу, а смена сезонов и связанное с ней изменение уровня инсоляции для них происходит более плавно и постепенно.

Не только солнце, но и другие источники электромагнитного излучения могут быть опасны, если это излучение превышает гигиенически допустимые нормы. В частности, такими источниками являются телевизионные и радиопередающие устройства, включая сотовые телефоны. Контакт детей с такими источниками должен быть ограничен, так как детский организм более чувствителен к излучению, чем взрослый. По этой же причине детям в ограниченном объеме и только в силу необходимости назначают разного рода медицинские процедуры, связанные с применением рентгеновского излучения.

Особую опасность представляют источники радиоактивного излучения. Последствия катастрофы на Чернобыльской АЭС особенно тяжелы тем, что пострадало большое число детей, у которых под воздействием радиоактивного излучения нарушается, в первую очередь, гормональная регуляция функций. Особенно часто в таких случаях наблюдается поражение щитовидной железы, а также половых желез. Радиоактивные изотопы, длительное время сохраняющиеся в зонах заражения, способны нарушать самые разные биохимические и физиологические процессы, угнетать рост и развитие и вызывать многие крайне тяжелые заболевания вплоть до лучевой болезни, поражающей систему кроветворения. Это заболевание приводит к резкой потере иммунитета и ослаблению кислородтранспортной функции крови, утрате половой функции, а в тяжелых случаях к смерти.

Парциальное давление атмосферных газов. Каждый газ, находящийся в сосуде, стремится заполнить собой весь объем этого сосуда. Если таких газов несколько, как это имеет место в нашей земной атмосфере (которую условно можно рассматривать в качестве такого сосуда - хотя он и не имеет «стенок», но газы удерживаются около Земли силой ее тяготения), то все равно каждый из них заполняет собой все пространство. Находясь в сосуде, газ оказывает на его стенки определенное давление, которое тем больше, чем больше количество данного газа в сосуде. Атмосферный воздух давит на поверхность Земли, и это давление равно весу столба воздуха от поверхности Земли до верхних, разреженных слоев атмосферы. При этом каждый из газов, составляющих смесь, оказывает свою часть давления. Вот эта часть и называется «парциальным давлением». Согласно законам физики, парциальное давление газа пропорционально его количественной (объемной) доле в данной газовой смеси. Кислород, которым мы дышим, составляет 21 % от общего объема атмосферного воздуха.

Плотность воздуха на уровне моря и высоко в горах сильно различается - с увеличением высоты воздух становится все более разреженным: сказывается уменьшение силы земного тяготения. Меняется атмосферное давление также в зависимости от погодных условий - в зонах циклонической активности оно заметно понижено, а в центре антициклона - повышено по сравнению с «нормой», за которую принято давление 760 мм рт. ст. - наиболее типичное давление на уровне моря в спокойную и ясную погоду. Такие колебания атмосферного давления приводят к тому, что меняется парциальное давление кислорода. Учитывая, что именно парциальное давление кислорода является тем физическим фактором, который обеспечивает его проникновение в организм, легко понять, что такие колебания давления атмосферы влияют на снабжение всех тканей организма кислородом. Жители высокогорных регионов, родившиеся и выросшие в этих условиях, хорошо адаптированы к некоторому недостатку кислорода в окружающем их воздухе, причем эта адаптация закреплена на генетическом Уровне. Для жителей равнинных районов требуется некоторое время, чтобы приспособиться к условиям высокогорья. Детский организм, в котором процессы окислительного обмена протекают более интенсивно, чем у взрослых, более чувствителен к любым перепадам парциального давления кислорода. Возможно поэтому маленькие дети становятся беспокойными и капризными при приближении грозы (зона пониженного атмосферного давления). Указанные обстоятельства необходимо учитывать также при организации путешествий и отдыха для детей, если они предполагают пребывание в высокогорных областях: такие путешествия детям не противопоказаны, но требуют соблюдения строгого режима, ограничения спонтанной двигательной активности и профилактики стрессовых состояний. Не рекомендуется маленьких детей, рожденных и проживающих обычно на равнинах, вывозить для отдыха в горы на высоты свыше 2000-2500 м.

Геомагнитные поля. В последние десятилетия многочисленные исследовательские группы пытаются выяснить, насколько и в каком направлении способны повлиять на состояние организма человека изменения, обусловленные нестабильностью земного магнетизма. Сила магнитного поля земли достаточно велика, а его колебания хорошо заметны для физических приборов, что послужило толчком для изучения эмоциональных и функциональных сдвигов, возникающих под влиянием изменений геомагнитной обстановки. Многие СМИ даже сообщают читателям и слушателям о предстоящих всплесках геомагнитной активности, предлагая им принимать в такие дни профилактические меры неспецифического характера. До сих пор неизвестна точка приложения действия геомагнитных полей на человеческий организм, хотя гипотез и недостаточно обоснованных теорий этого воздействия огромное количество. Специальные измерения, проводившиеся на молодых здоровых людях (студентах), не подтверждают предположений о сильном влиянии геомагнитных полей на психику и вегетативные системы человека. В то же время практический опыт показывает, что дети и старики бывают гораздо более чувствительны к слабым воздействиям, чем люди работоспособного возраста. Вполне вероятно, что геомагнитные воздействия относятся как раз к такому разряду. Во всяком случае, опыт практических врачей-педиатров подтверждает, что дни, на которые прогнозируется резкое изменение геомагнитной ситуации, бывают наиболее напряженными в их практике: больше вызовов, более сложные случаи заболеваний и т. п. Защитить ребенка от воздействия геомагнитного поля Земли невозможно, однако помочь ему пережить наиболее неблагоприятные периоды без негативных последствий вполне реально, следует лишь проявлять в такие дни повышенное внимание к ребенку и больше считаться с его неосознанными потребностями: в таких ситуациях часто инстинктивное поведение оказывается более правильным, чем поведение, диктуемое разумом.

Химические факторы. Человек привык жить в условиях взаимодействия с огромным количеством разнообразных веществ, которые в совокупности составляют биогеохимическую среду его обитания. Среди этих веществ есть необходимые человеку (вода, кислород, питательные вещества и многое другое), нейтральные (азот, многие минеральные вещества и т.п.), а также ядовитые, или токсичные. Поскольку для организма далеко не безразлично, с какими веществами ему приходится иметь дело, уже давно существуют гигиенические нормы предельно допустимых концентраций разнообразных веществ, встречающихся в воздухе, воде, пище, земле и других субстанциях, с которыми соприкасается человек в своей жизни и деятельности.

Состав атмосферного воздуха - важный фактор, влияющий на состояние и функциональную активность человека. В норме атмосферный воздух содержит 21 % кислорода, 78 % азота и около 1 % инертных газов и различных примесей, в том числе углекислый газ, выдыхаемый всеми животными. К таким концентрациям газов мы привыкли. Значительные изменения состава воздуха могут происходить при разного рода чрезвычайных ситуациях и катастрофах. Например, если горит лес или торф, на большой площади вокруг этой территории может резко возрасти содержание в воздухе угарного газа (окись углерода СО), который в отличие от углекислого газа (двуокись углерода СО 2) не стимулирует дыхание, а выводит из строя молекулы гемоглобина, которые переносят в организме животных и человека молекулы кислорода. Отравление угарным газом - одна из главных причин гибели людей на пожарах, а также при неправильном пользовании печью. К такому же результату может привести длительный прогрев автомобильного двигателя в закрытом гараже. Множество ядовитых веществ попадает в воздух в результате работы миллионов автомобильных двигателей и промышленных предприятий, поэтому воздух в крупных городах никак не может считаться безвредным. В лесной зоне воздух насыщен веществами, выделяемыми деревьями, в частности хвойные деревья вырабатывают летучие фитонциды, помогающие очищать воздух от болезнетворных микробов. Большой целебной силой обладает воздух соляных пещер и соляных пустынь: всем известна удивительная целебная сила окрестностей Мертвого моря, где воздух насыщен микроскопическими кристалликами минеральных солей. Морской воздух всегда имеет примесь йода и других испаряющихся веществ, что также влияет на состояние организма. Следует подчеркнуть, что детский организм значительно более чувствителен к изменениям химического состава воздуха, чем взрослый.

Состав воды - гораздо более изменчивый фактор, чем состав воздуха. Сами по себе молекулы воды, разумеется, всегда одинаковы (хотя, по современным данным, вода может находиться в 8 разных физических состояниях, каждое из которых определяет способность воды растворять другие вещества и влиять на их проницаемость через биологические мембраны), но состав и концентрация растворенных в воде веществ могут меняться в очень широких пределах. Морская вода - соленая, непригодная для питья, причем ее состав в разных морях несколько различается. Речная и озерная вода - пресная, однако и в ней растворено некоторое количество солей. Вода, добываемая из артезианских скважин и колодцев, также весьма различна по своему составу. Все это может сильно влиять на обменные процессы в организме человека. Так, выше мы уже говорили, что в местностях, где в воде содержится мало йода, у людей наступает дисфункция щитовидной железы и развивается базедова болезнь - тяжелое нарушение обмена веществ, которое лечится путем добавления солей йода в пищевой рацион. Наличие в воде фтора положительно влияет на твердость зубной эмали, а если организм получает недостаточное количество фтора, зубы начинают крошиться и выпадать в очень раннем возрасте. Чтобы избежать этого, во многих странах теперь воду специально фторируют, одновременно дезинфицируя ее (в России воду, употребляемую в городах для приготовления пищи, для дезинфекции обычно хлорируют или озонируют). Вода - прекрасная среда для размножения множества разнообразных микроорганизмов, в том числе патогенных, т. е. способных вызвать у человека различные заболевания. Поэтому дезинфекция воды, которая используется человеком, - важнейшая забота санитарных служб. Дети бывают особенно чувствительны к болезнетворным микробам, поэтому для приготовления пищи и напитков для детей нужно использовать только кипяченую воду, особенно весной и летом, когда условия для размножения микробов благоприятны. Забота о качестве воды - непременное условие оздоровительного эффекта летнего отдыха детей в сельской местности (в летних лагерях, в походах и экспедициях, просто в деревне).

Состав и качество пищи во многом определяются составом воды и почвы окружающей местности. Химический состав пищи важен также для того, чтобы обеспечить организм всеми необходимыми питательными веществами: белками, жирами, углеводами, витаминами, микроэлементами и т.п. Микроэлементный состав почвы, на которой выращены растения, предназначенные для питания человека и домашних животных, - очень важный фактор, влияющий на гармоничность обменных процессов и нормальное протекание роста и развития ребенка. Более детально проблема качества и количества пищи для детей разного возраста будет обсуждена ниже.

Наличие токсичных веществ может сделать неприемлемым использование любого продукта. Токсичные (ядовитые) вещества могут при определенных условиях накапливаться в воздухе (испарения в зоне разломов земной коры, выхлопы автотранспорта, выбросы промышленных предприятий и т.п.) и воде (химические загрязнения вследствие технологических процессов, разложение органических веществ в стоячей воде и т. п.). При попадании в организм растений и животных этих токсичных веществ возникает вероятность их попадания и в пищу человека, что может привести к сильному отравлению и даже к смерти. Большую осторожность следует проявлять при покупке ранних овощей и фруктов: многие из них выращены с использованием чрезмерных количеств удобрений, а избыток нитратных солей отрицательно сказывается на работе печени, желудочно-кишечного тракта и почек человека. Токсины оказываются в воде также благодаря деятельности некоторых микроорганизмов.

Биологические факторы. Будучи биологическим объектом, человек вольно или невольно непрерывно взаимодействует с огромным количеством живых существ, которые его окружают.

Внутривидовое и межвидовое взаимодействие. С одной стороны, человеку необходимо общаться с себе подобными, и такое общение обязательно влияет на состояние его организма, поскольку это общение вызывает изменения в работе нервной и гормональной систем регуляции. В данном случае речь не идет о социально-психологических аспектах (об этом будет сказано позже), здесь имеются в виду те инстинктивные, неосознаваемые человеком сугубо биологические реакции его организма, которые возникают под влиянием других людей либо сами влияют на окружающих. Так, каждый человек выделяет в окружающее его пространство целый букет разнообразных ароматических веществ, служащих для индивидуальной и половой идентификации. Слабость нашего обоняния (по сравнению с обонянием диких животных) не означает, что мы не улавливаем на подсознательном уровне подобных сигналов и что наша ЦНС не реагирует на них. Внешний вид и неосознаваемый ароматический портрет человека - основа так называемого «первого впечатления», которое, как известно, часто бывает наиболее интегральным и наиболее точным и определяет в дальнейшем характер взаимоотношений с данным человеком. Другой пример внутривидового взаимодействия - известное многим состояние напряжения при попадании в толпу. Даже если нет прямой угрозы жизни и здоровью, человек в толпе часто чувствует себя неуютно, его пугает обилие других человеческих тел, окружающих его, необходимость следовать непредсказуемой воле этого конгломерата. И в то же время быть членом такой группы, которая становится в некий момент «суперорганизмом», - один из самых притягательных соблазнов, инстинктивно переживаемых человеком. Именно по этой причине столь чувственным является, скажем, хоровое пение: каждый, кто участвует в хоре, в какой-то момент начинает ощущать себя частичкой этого суперорганизма, ощущает его власть над собой, и это ощущение вселяет ужас, но и доставляет сладость. Все это на грани физиологии и психологии, но нам важно подчеркнуть, что каждое подобное событие в жизни человека - глубокий стресс, развивающийся по всем законам физиологии, с резкой активацией секреции эндокринных желез и вегетативных реакций.

С другой стороны, человек непрерывно взаимодействует с представителями других видов живых существ. Даже если с человеком не живут никакие домашние животные, помогающие ему снимать стресс и расслабляться, либо, напротив, обладающие стрессогенным эффектом (например, ежедневная дойка коровы представляет собой неизбежный и утомительный вид работы), контактов с представителями животного и растительного мира избежать невозможно.

Если собственных иммунных сил организма для борьбы с патогенными микробами не хватает, приходится прибегать к помощи лекарственных препаратов. Наиболее сильные из них - антибиотики, которые первоначально были выделены из плесневых грибов, а теперь обычно синтезируются на фармацевтических фабриках. Употребление большого количества антибиотиков может приводить к развитию грибковой микрофлоры в кишечнике, что является тяжелым осложнением после инфекционных заболеваний. Для профилактики такого развития событий необходимо вместе с антибиотиками принимать противогрибковые препараты (например, нистатин).

Соблюдение гигиенических правил при приготовлении и употреблении пищи - важнейшая мера профилактики инвазий (поражений глистами).

Природные очаги инфекций и инвазий. Есть инфекционные заболевания, характерные только для человека. А есть такие, которыми болеют и животные, живущие в дикой природе, и человек. Вот эти инфекции могут существовать в некоторых природных условиях независимо от того, живет ли там человек, зато если человек попадает в такую область, то почти неминуемо заболевает. Такие зоны называются природными очагами инфекций, и погасить подобный очаг часто бывает невозможно. Например, чумой болеют многие степные и пустынные грызуны - песчанки, тушканчики, суслики, сурки и другие. В тех местах, где они живут, нередко сотни и тысячи лет существуют природные очаги чумы. Если поблизости поселяется человек, то он может даже незаметно для себя вступить в контакт с этими грызунами либо получить возбудителя чумы через блоху, которая сначала укусила чумного зверька, а потом попала на тело человека. К природно-очаговым инфекциям относятся также сибирский (клещевой) энцефалит, желтая лихорадка, туляремия, сибирская язва, малярия, геморрагические лихорадки и другие особо опасные инфекции.

Детские болезни - форма адаптации организма. Следует подчеркнуть, что дети страдают от инфекций гораздо чаще, чем взрослые. Это связано с тем, что большое число инфекционных заболеваний вызывает стойкий пожизненный иммунитет, т. е. повторная встреча с патогенным микроорганизмом уже не способна привести к заболеванию, так как в организме выработаны соответствующие меры защиты. Однако исключить столкновение ребенка с микробами невозможно, да и не нужно. Так называемые детские инфекционные болезни (корь, скарлатина, ветряная оспа, свинка, краснуха и т.п.) - естественная форма адаптации детского организма к жизни в мире, где возбудители этих инфекций постоянно циркулируют. Это своего рода тренировка для иммунной системы ребенка. Разумеется, эти болезни необходимо правильно лечить и по возможности исключать развитие осложнений, которые, собственно, представляют наибольшую опасность. С возрастом вероятность заболевания многими инфекциями уменьшается, однако к старости иммунитет вновь снижается, и старики часто заболевают, заражаясь от детей.

Социальные факторы. К социальным факторам среды, влияющим на протекание физиологических процессов в организме, относится прежде всего образ жизни человека, сложившийся в результате взаимодействия некоторых психологических, биологических и социальных условий его жизни. В частности, на физическое и функциональное состояние как взрослых, так и (особенно) детей влияет уровень материального достатка, поскольку от него зависит качество и количество потребляемой пищи, доступность разнообразных гигиенических процедур, степень комфортабельности жилища и мест отдыха, способ и качество проведения свободного времени, уровень оздоровительной двигательной активности и т.д. В этом отношении первейшую роль играют семья и ближайшее окружение, причем это особенно важно для детей и подростков, которым порой приходится активно включаться в производственные дела, особенно в сельской местности. Множество обстоятельств семейной жизни составляют тот фон, на котором разворачиваются все физиологические процессы в организме. Режим дня, питания, соблюдение гигиенических правил, условия быта, место проживания и многое другое оказывают самое прямое влияние на каждого человека независимо от его возраста и рода занятий.

Явления мировой культуры, в частности мировые религии, музыка и другие виды искусства, - все это так или иначе влияет на современного человека, формируя его вкусы и пристрастия и тем самым определяя образ его жизни. В конечном счете мировая культура также является одним из факторов окружающей человека среды, в которой он должен чувствовать себя комфортно, если этого нет. то. значит, адаптация не совершилась, и это обстоятельство уже само по себе способно привести к самым неприятным для здоровья последствиям.

Тип урока- комбинированный

Методы: частично-поисковый, про-блемного изложения, репродуктивный, объясни-тельно-иллюстративный.

Цели:

Осознание жизни как наивысшей ценности, умение строить свои отношения с природой и обществом на основе уважения к жизни, ко всему живому как уникальной и бесценной части биосферы;

Разностороннее развитие личности учащихся: наблюдательности, устойчивого познавательного интереса, стремление к самообразованию и применению полученных знаний на практике;

Формирование санитарно- гигиенической культуры, их экологического мышления и нравственности.

Образовательные : обладать определенными эко-логическими знаниями и гигиеническими знаниями - важную составляющую культуры каждого человека;

Развивающие : развивать познавательно - практическую направленность, свободу и творческую мысль, обще-учебные умения работы с научно- популярной литературойи интернет источниками

Воспитательные: воспитывать учащихся средствами данного урока для развития физически и нравственно здорового человеческого об-щества.

Регулятивные: организовывать своё рабочее место под руководством учителя; определять план выполнения заданий на уроке, оценивать результат своей деятельности.

Коммуникативные: участвовать в диалоге на уроке; отвечать на вопросы учителя, товари-щей по классу; слушать и понимать речь других; работать в малой группе.

Познавательные: ориентироваться в учебнике; находить нужную информацию в тексте учебной статьи.

Планируемые результаты

Предметные

влияние человека на отдельные компоненты природы и влияние природы на все стороны человеческой деятельности;

подготовку школьников к практической деятельности в области биологии, экологии и медицины;

Установление гармоничных отношений с природой, со всем живым, как главной ценностью на Земле.

основную биоэкологическую терминологию и символику

Личностные:

формирование интереса к глобальной проблеме, полу-чившую название: «экологическая проблема», которая связана с ухудшением качественных характеристик окружающей человека.

Межпредметные : связи с такими учебными дисциплинами как биология, химия, физика, география - будут способствовать более высокому уровню владения навыками по данному курсу и реализации задач пред профильной подготовки школьников.

Форма урока - традиционная

Технология - проблемного обучения

Изучение нового материала

НЕБЛАГОПРИЯТНЫЕ ФАКТОРЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ИХ ВОЗДЕЙСТВИЕ

НА ОРГАНИЗМ

Человек является частью природы, поэтому он испытывает на себе действие ее законов. Он реагирует на воздействие природных факторов, как и любой другой живой организм. Отличается же он от всех других живых существ, населяющих Землю, осознанным и активным отношением к окружающей его природной среде.

Человек живет и трудится в различных природных условиях благодаря замечательной приспособляемости к новым условиям жизни, а главное потому, что научился поддерживать и созда-вать вокруг себя необходимую для него среду, используя различ-ные средства защиты. Человек не только сам приспосабливается к окружающей его внешней: среде, но и приспосабливает ее к себе, активно преобразуя. Измененная человеком природа в свою очередь оказывает как благоприятное, так и неблагоприятное воз-действие на. условия жизни людей. Поэтому необходимо знать, что в окружающей среде полезно для организма, а что вредно, ка кие изменения; среды: благоприятны для организма,. а какие неблагоприятные нередко, изменяя естественные природные ус-ловия, используя для производства ее богатства: леса, недра, воды и т. п., человек заботится, главным образом, о получении макси-мального экономического эффекта.- При этом довольно часто не учитывается возможное, и реальное влияние этих изменений на физическое и психическое здоровье человека, а иногда на состояние здоровья будущих поколений, его генофонд.

Безусловно, вредное, воздействие на организм оказывают: ядо-витые химические вещества, попадающие в воду, пищу, воздух; пыль, повышенная радиация, микроорганизмы, возбудители раз-личных заболеваний. Из природных факторов безусловно полез-ным является чистый свежий воздух и не загрязненные воды. Есть факторы, которые могут быть полезными и вредными в зависимос-ти от того, как ими пользоваться. Так, солнечные лучи, необходи-мые для нормальной жизнедеятельности человека, наносят большой вред здоровью при неумеренном их использовании. Для сохране-ния здоровья необходимо также понимать, как бороться с причи-нами заболеваний, а также знать защитные силы организма, которые сохраняют здоровье. Так, причинами заболеваний могут стать механические воздействия, например удары, растяжения, сдавливания, изгибы живых тканей организма с силой, превыша-ющей их способность к сопротивлению (разрывы тканей, перело-мы костей и т.д.). При воздействии высоких температур (горячие жидкости, металл, пламя) в месте ожога клетки гибнут, развива-ется воспаление. При сильных ожогах происходит омертвление ткани. Нарушается общее состояние организма — ожоговая бо-лезнь, которая требует длительного лечения. Перегревание орга-низма, сопровождающееся повышением температуры до 42 “С, приводит к тепловому удару, который может закончиться смертью в результате нарушения; терморегуляции. Тепловой удар может возникнуть при длительном воздействии солнечных лучей. Опасно также влияние на организм низких температур. При этом проис-ходит обморожение тканей — гибель клеток. Общее переохлажде-ние организма вызывает снижение температуры тола ниже уровня, необходимого для осуществления жизненных функций тканей, что приводит к смерти. Охлаждение организма может вызвать про-студные заболевания. Различные виды обличения оказывают вред-ное воздействие на ткани и приводят к заболеваниям. Так, ультрафиолетовые лучи, вызывающие развитие кожной пигмента-ции и образующие загар, при неумеренном длительном загорании могут вызвать ожоги кожи и стать причиной возникновения рака кожи, привести к перегреву головы, к повреждению мозговых обо-лочек и гибели нервных клеток. Тепловое излучение вызывает пе-регрев тела с болезненными последствиями. ^ Радиационное облучение оказывает разрушающее воздействие на наследствен-ный аппарат клеток, вызывая их гибель. Многие другие физичес-кие факторы могут оказывать повреждающее воздействие на организм. Однако большинство из них становятся вредными для организма, если их воздействие резко превышает допустимые нор-мы (как в случае действия солнечных лучей).


Химические вещества, попадающие на кожу (кислоты, щело-чи), вызывают химический ожог. Это разрушение тканей орга-низма в связи с резким изменением химического состава и реакции межклеточного вещества и клеток. Попадание вредных химических веществ в организм с нищей или через органы ды-хания вызывает отравление. При недостатке или избытке хи-мических веществ, необходимых для нормальной деятельности организма, происходит нарушение его обменных процессов. На-пример, наркотические вещества, никотин, алкоголь, попадая в организм, изменяют химический состав его внутренней среды и нарушают тканевый обмен веществ всех органов, а особенно нервной ткани. При длительном воздействии этих веществ на-рушения обменных процессов оказываются необратимыми, и наступает смерть.

Организм постоянно подвергается воздействию болезнетвор-ных факторов окружающей среды. Однако случаи заболеваний встречаются не так часто, как можно было бы ожидать, если учесть, что нас окружают потенциальные факторы, отрицательно влияют на организм.

Люди крепкие, тренированные, постоянно занимающиеся спортом даже во вре-мя эпидемии гриппа заболевают редко, так как их физическая подготовка помогает организму противостоять вредным воз-действиям окружающей среды.

Это интересно: исследования причин, влияющихна состояние здоровья населения, показали, что 50% к образу жизни.

Подумайте и ответьте. 1. Воздействие, каких факторов окружающей среды может стать причиной? 2. Какие из этих факторов называют вредными привычками и почему? 3. Приведите примеры фак-торов, которые в малых дозах полезны для организма, а в больших - вредны.

Объясните значение терминов: неблагоприятные факторы окружаю-щей среды, ослабленный организм.

Вопросы для размышления. 1. Почему нарушение состава внутренней среды организма отрицательно сказывается на функционировании многих органов? Приведите конкретные примеры. 2. Как вы понимаете мудрость древних «Не навреди себе»? 3. Как вы можете объяснить поговорку. «Твое здоровье в твоих руках»? 4. Можно ли дать примерную характеристику образа жизни, поведения человека слабого физически и часто простужива-ющегося, если с ним не знаком?

Вопросы для самоконтроля. 1. Какие свойства организма проявляются при взаимодействии организма с внешней средой? 2. Как связана внутрен-няя среда организма с внешней средой? 3. Какие функции выполняют ком-поненты внутренней среды организма кровь, лимфа, тканевая жидкость? 4. Какие факторы внешней среды являются благоприятными, а какие — неблагоприятными? 5. Почему на ослабленный организм неблагоприятные факторы, окружающей среды оказывают, более сильное отрицательное воз-действие вызывают заболевания, в то время, как сильный организм справляется с ними и не заболевает?

Хостинг презентаций

error: