Сложные производные задания. Решение производной для чайников: определение, как найти, примеры решений. Производная логарифмической функции

Рассмотрим задачу из алгебры многочленов.

Задача 4.1

Пусть а является корнем многочлена х 3 + 6х - 3. Нужно освободиться от алгебраической иррациональности в знаменателе дроби

Т.е. представить дробь в виде многочлена от а с рацио-

нальными коэффициентами.

Решение. Знаменатель дроби есть значение от а многочлена fix) =х 2 + 5, а минимальным многочленом алгебраического элемента а является ф(х) =х 3 + 6х- 3, поскольку этот многочлен неприводим над полем Q (по критерию Эйзенштейна при простом р = 3). Найдем НОДОс 3 + - 3, х 2 + 5) с помощью алгоритма Евклида:

Обобщим ситуацию и рассмотрим общую задачу.

Задача об освобождении от алгебраической иррациональности в знаменателе дроби

Пусть а - алгебраическая иррациональность над полем Р с ми-

, . „ а к а к +a k _,a k ~ l -f-. + aia + Oo

нимальным многочленом фОО и В = - - 1

Ъ т а т + bro-ioc" 1 - 1 +... + bja + b 0

где коэффициенты многочленов в числителе и знаменателе дроби принадлежат полю Р. Освободиться от алгебраической иррациональности в знаменателе дроби, т.е. представить (3 в виде

где коэффициенты принадлежат полю Р.

Решение. Обозначим/)*) = b nl x" + b m _ 1 x nl_1 +... + b } x + b 0 и у =/(а). Поскольку у ^ 0, то по свойству минимального многочлена НОД(/(х), ф(х)) = 1. Используя алгоритм Евклида, находим многочлены u(x) и v(x), такие что f(x) и (х) + ф(х)у(х) = 1. Отсюда Да) и (а) + ф(а)у(а) = 1, а так как ф(а) = 0, тоДа)и(а) = 1. Следовательно, умножая числитель и знаменатель данной дроби на ц(а), в знаменателе получим единицу, и задача решена.

Заметим, что общий прием освобождения от алгебраической иррациональности в знаменателе дроби в случае комплексных а + Ы

чисел-приводит к известной процедуре умножения числи-

теля и знаменателя на число, сопряженное знаменателю.

Исторический экскурс

Впервые существование чисел, трансцендентных над полем Q, обнаружил Ж. Лиувилль (1809-1882) в работах 1844 и 1851 гг. Одним из трансцендентных чисел Лиувилля является число

Ш. Эрмит (1822-

а= У--. Вдесятичнойзаписиа = 0Д100010..

кл 10*

1901) доказал трансцендентность числа е в 1873 г., а К. Ф. Линде- ман (1852-1939) доказал в 1882 г. трансцендентность числа п. Эти результаты были получены очень не просто. В то же время совсем просто Г. Кантор (1845-1918) доказал, что трансцендентных чисел «значительно больше», чем алгебраических: трансцендентных чисел «столько же», сколько всех действительных чисел, в то время как алгебраических чисел «столько же», сколько всех натуральных чисел. Точнее, множество алгебраических чисел счетно, а множество трансцендентных чисел несчетно. Доказательство этого факта, устанавливая существование трансцендентных чисел, не дает рецепта получения ни одного из них. Такого рода теоремы существования чрезвычайно важны в математике уже тем, что вселяют веру в успех поиска объекта, существование которого доказано. Вместе с тем существует направление в математике, представители которого не признают чистых теорем существования, называя их неконструктивными. Наиболее яркими из этих представителей являются Л. Кронекер и Я. Брауэр.

В 1900 г. на Всемирном конгрессе математиков в Париже немецкий математик Д. Гильберт (1862-1943) сформулировал следующую проблему 22: Какова природа числа аР, где а и (3 - алгебраические числа, а ^ 0, а ^ 1 и степень алгебраического числа (3 не меньше 2? А. О. Гельфонд (1906-1968) доказал, что такие числа трансцендентны. Отсюда следует, в частности, что числа 2^, З г являются трансцендентными.

Освобождение от иррациональности в знаменателе дроби

2015-06-13

Сопряженное иррациональное выражение

При преобразовании дробного алгебраического выражения, в знаменателе которого записано иррациональное выражение, обычно стремятся представить дробь так, чтобы ее знаменатель был рациональным. Если $A, B, C, D, \cdots$ - некоторые алгебраические выражения, то можно указать правила, с помощью которых можно освободиться от знаков радикала в знаменателе выражений вида

$\frac{A}{\sqrt[n]{B}}, \frac{A}{B+C \sqrt{D}}, \frac{A}{\sqrt{B} + c \sqrt{D}}, \frac{A}{ \sqrt{B} \pm \sqrt{C}}$ и т.д.

Во всех этих случаях освобождение от иррациональности производится умножением числителя и знаменателя дроби на множитель, выбранный так, чтобы его произведение на знаменатель дроби было рациональным.

1) Для освобождения от иррациональности в знаменателе дроби вида $A/ \sqrt[n]{B}$ умножаем числитель и знаменатель на $\sqrt[n]{B^{n-1}}$.
$\frac{A}{\sqrt[n]{B}} = \frac{A \sqrt[n]{B^{n-1}}}{\sqrt[n]{B} \sqrt[n]{B^{n-1}}} = \frac{A \sqrt[n]{B^{n-1}}}{B}$.

Пример 1. $\frac{4a^{2}b}{\sqrt{2ac}} = \frac{4a^{2}b \sqrt{4a^{2}c^{2}}}{2ac} = \frac{2ab}{c} \sqrt{4a^{2}c^{2}}$.

В случае дробей вида $\frac{A}{B+ C \sqrt{D}}, \frac{A}{\sqrt{B} + c \sqrt{D}}$ умножаем числитель и знаменатель на иррациональный множитель
$B – C \sqrt{D}$ или $\sqrt{B} – c \sqrt{D}$
соответственно, т. е. на сопряженное иррациональное выражение.

Смысл последнего действия состоит в том, что в знаменателе произведение суммы на разность преобразуется в разность квадратов, которая уже будет рациональным выражением.

Пример 2. Освободиться от иррациональности в знаменателе выражения:
а) $\frac{xy}{\sqrt{x^{2} + y^{2}} + x}$; б) $\frac{2}{\sqrt{5} - \sqrt{3}}$.

Решение, а) Умножаем числитель и знаменатель дроби на
выражение $\sqrt{x^{2} + y^{2}} - x$. Получаем (при условии, что $y \neq 0$)
$\frac{xy}{\sqrt{x^{2} + y^{2}} + x} = \frac{xy (\sqrt{x^{2} + y^{2}} - x)}{(x^{2} + y^{2}) – x^{2}} = \frac{x}{y} (\sqrt{x^{2} + y^{2}} - x)$;
б) $\frac{2}{\sqrt{5} - \sqrt{3}} = \frac{2(\sqrt{5} + \sqrt{3})}{5 - 3} = \sqrt{5} + \sqrt{3}$.
3) В случае выражений типа
$\frac{A}{B \pm C \sqrt{D}}, \frac{A}{\sqrt{B} \pm C \sqrt{D}}$
знаменатель рассматривается как сумма (разность) и умножается на неполный квадрат разности (суммы), чтобы получить сумму (разность) кубов. На тот же множитель умножается и числитель.

Пример 3. Освободиться от иррациональности в знаменателе выражений:
а)$\frac{3}{\sqrt{5} + 1}$; б)$\frac{1}{\sqrt{a} – 2 \sqrt{b}}$

Решение, а) Рассматривая знаменатель данной дроби как сумму чисел $\sqrt{5}$ и $1$, умножим числитель и знаменатель на неполный квадрат разности этих чисел:
$\frac{3}{\sqrt{5} + 1} = \frac{3 (\sqrt{5^{2}} - \sqrt{5} +1)}{(\sqrt{5} + 1)(\sqrt{5^{2}} - \sqrt{5} + 1)} = \frac{3(\sqrt{25} - \sqrt{5} + 1)}{(\sqrt{5})^{3} +1}$,
или окончательно:
$\frac{3}{\sqrt{5} + 1} = \frac{3(\sqrt{25} - \sqrt{5} + 1)}{6} = \frac{\sqrt{25} - \sqrt{5} + 1}{2}$
б) $\frac{1}{\sqrt{a} – 2 \sqrt{b}} = \frac{\sqrt{a^{2}} + 2 \sqrt{ab} + 4 \sqrt{b^{2}}}{(\sqrt{a})^{3} – (2 \sqrt{b})^{3}} = \frac{ \sqrt{a^{2}} + 2 \sqrt{ab} + 4 \sqrt{b^{2}}}{a-8b}$.

В некоторых случаях требуется выполнить преобразование противоположного характера: освободить дробь от иррациональности в числителе. Оно проводится совершенно аналогично.

Пример 4. Освободиться от иррациональности в числителе $\frac{\sqrt{a+b} - \sqrt{a-b}}{2b}$.
Решение. $ \frac{\sqrt{a+b} - \sqrt{a-b}}{2b} = \frac{(a+b) – (a-b)}{2b(\sqrt{a+b} + \sqrt{a-b})} = \frac{1}{\sqrt{a+b} + \sqrt{a-b}}$

Приводятся примеры вычисления производных с применением формулы производной сложной функции.

Содержание

См. также: Доказательство формулы производной сложной функции

Основные формулы

Здесь мы приводим примеры вычисления производных от следующих функций:
; ; ; ; .

Если функцию можно представить как сложную функцию в следующем виде:
,
то ее производная определяется по формуле:
.
В приводимых ниже примерах, мы будем записывать эту формулу в следующем виде:
.
где .
Здесь нижние индексы или , расположенные под знаком производной, обозначают переменные, по которой выполняется дифференцирование.

Обычно, в таблицах производных , приводятся производные функций от переменной x . Однако x - это формальный параметр. Переменную x можно заменить любой другой переменной. Поэтому, при дифференцировании функции от переменной , мы просто меняем, в таблице производных, переменную x на переменную u .

Простые примеры

Пример 1

Найти производную сложной функции
.

Запишем заданную функцию в эквивалентном виде:
.
В таблице производных находим:
;
.

По формуле производной сложной функции имеем:
.
Здесь .

Пример 2

Найти производную
.

Выносим постоянную 5 за знак производной и из таблицы производных находим:
.


.
Здесь .

Пример 3

Найдите производную
.

Выносим постоянную -1 за знак производной и из таблицы производных находим:
;
Из таблицы производных находим:
.

Применяем формулу производной сложной функции:
.
Здесь .

Более сложные примеры

В более сложных примерах мы применяем правило дифференцирования сложной функции несколько раз. При этом мы вычисляем производную с конца. То есть разбиваем функцию на составные части и находим производные самых простых частей, используя таблицу производных . Также мы применяем правила дифференцирования суммы , произведения и дроби . Затем делаем подстановки и применяем формулу производной сложной функции.

Пример 4

Найдите производную
.

Выделим самую простую часть формулы и найдем ее производную. .



.
Здесь мы использовали обозначение
.

Находим производную следующей части исходной функции, применяя полученные результаты. Применяем правило дифференцирования суммы:
.

Еще раз применяем правило дифференцирования сложной функции.

.
Здесь .

Пример 5

Найдите производную функции
.

Выделим самую простую часть формулы и из таблицы производных найдем ее производную. .

Применяем правило дифференцирования сложной функции.
.
Здесь
.

Дифференцируем следующую часть, применяя полученные результаты.
.
Здесь
.

Дифференцируем следующую часть.

.
Здесь
.

Теперь находим производную искомой функции.

.
Здесь
.

См. также:

Если g (x ) и f (u ) – дифференцируемые функции своих аргументов соответственно в точках x и u = g (x ), то сложная функция также дифференцируема в точке x и находится по формуле

Типичная ошибка при решении задач на производные - машинальное перенесение правил дифференцирования простых функций на сложные функции. Будем учиться избегать этой ошибки.

Пример 2. Найти производную функции

Неправильное решение: вычислять натуральный логарифм каждого слагаемого в скобках и искать сумму производных:

Правильное решение: опять определяем, где "яблоко", а где "фарш". Здесь натуральный логарифм от выражения в скобках - это "яблоко", то есть функция по промежуточному аргументу u , а выражение в скобках - "фарш", то есть промежуточный аргумент u по независимой переменной x .

Тогда (применяя формулу 14 из таблицы производных)

Во многих реальных задачах выражение с логарифмом бывает несколько сложнее, поэтому и есть урок

Пример 3. Найти производную функции

Неправильное решение:

Правильное решение. В очередной раз определяем, где "яблоко", а где "фарш". Здесь косинус от выражения в скобках (формула 7 в таблице производных)- это "яблоко", оно готовится в режиме 1, воздействующем только на него, а выражение в скобках (производная степени - номер 3 в таблице производных) - это "фарш", он готовится при режиме 2, воздействующей только на него. И как всегда соединяем две производные знаком произведения. Результат:

Производная сложной логарифмической функции - частое задание на контрольных работах, поэтому настоятельно рекомендуем посетить урок "Производная логарифмической функции".

Первые примеры были на сложные функции, в которых промежуточный аргумент по независимой переменной был простой функцией. Но в практических заданиях нередко требуется найти производную сложной функции, где промежуточный аргумент или сам является сложной функцией или содержит такую функцию. Что делать в таких случаях? Находить производные таких функций по таблицам и правилам дифференцирования . Когда найдена производная промежуточного аргумента, она просто подставляется в нужное место формулы. Ниже – два примера, как это делается.

Кроме того, полезно знать следующее. Если сложная функция может быть представлена в виде цепочки из трёх функций

то её производную следует находить как произведение производных каждой из этих функций:

Для решения многих ваших домашних заданий может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Пример 4. Найти производную функции

Применяем правило дифференцирования сложной функции, не забывая, что в полученном произведении производных промежуточный аргумент по независимой переменной x не меняется:

Готовим второй сомножитель произведения и применяем правило дифференцирования суммы:

Второе слагаемое - корень, поэтому

Таким образом получили, что промежуточный аргумент, являющийся суммой, в качестве одного из слагаемых содержит сложную функцию: возведение в степень - сложная функция, а то, что возводится в степень - промежуточный аргумент по независимой переменной x .

Поэтому вновь применим правило дифференцирования сложной функции:

Степень первого сомножителя преобразуем в корень, а дифференцируя второй сомножитель, не забываем, что производная константы равна нулю:

Теперь можем найти производную промежуточного аргумента, нужного для вычисления требуемой в условии задачи производной сложной функции y :

Пример 5. Найти производную функции

Сначала воспользуемся правилом дифференцирования суммы:

Получили сумму производных двух сложных функций. Находим первую из них:

Здесь возведение синуса в степень - сложная функция, а сам синус - промежуточный аргумент по независимой переменной x . Поэтому воспользуемся правилом дифференцирования сложной функции, попутно вынося множитель за скобки :

Теперь находим второе слагаемое из образующих производную функции y :

Здесь возведение косинуса в степень - сложная функция f , а сам косинус - промежуточный аргумент по независимой переменной x . Снова воспользуемся правилом дифференцирования сложной функции:

Результат - требуемая производная:

Таблица производных некоторых сложных функций

Для сложных функций на основании правила дифференцирования сложной функции формула производной простой функции принимает другой вид.

1. Производная сложной степенной функции, где u x
2. Производная корня от выражения
3. Производная показательной функции
4. Частный случай показательной функции
5. Производная логарифмической функции с произвольным положительным основанием а
6. Производная сложной логарифмической функции, где u – дифференцируемая функция аргумента x
7. Производная синуса
8. Производная косинуса
9. Производная тангенса
10. Производная котангенса
11. Производная арксинуса
12. Производная арккосинуса
13. Производная арктангенса
14. Производная арккотангенса
error: