Свойства перпендикулярных плоскостей. Перпендикулярные плоскости, условие перпендикулярности плоскостей. Перпендикулярность в пространстве могут иметь

Данная статья посвящена перпендикулярным плоскостям. Будут даны определения, обозначения вместе с примерами. Будет сформулирован признак перпендикулярности плоскостей и условие, при котором он выполним. Будут рассмотрены решения подобных задач на примерах.

Yandex.RTB R-A-339285-1

При наличии угла между пересекающимися прямыми можно говорить об определении перпендикулярных плоскостей.

Определение 1

При условии, что угол между перпендикулярными прямыми равен 90 градусов, их называют перпендикулярными.

Обозначение перпендикулярности принято писать знаком « ⊥ ». Если в условии дано, что плоскости α и β перпендикулярные, тогда запись принимает вид α ⊥ β . На рисунке ниже показано подробно.

Когда в улови дано, что плоскость α и β перпендикулярны, это значит, что α перпендикулярна β и наоборот. Такие плоскости называют взаимно перпендикулярными. Например, стена и потолок в комнате являются взаимно перпендикулярными, так как при пересечении дают прямой угол.

Перпендикулярность плоскостей – признак и условие перпендикулярности

На практике можно встретить задания, где необходимо определить перпендикулярность заданных плоскостей. Для начала нужно определить угол между ними. Если он равен 90 градусам, тогда они считаются перпендикулярными из определения.

Для доказательства перпендикулярности двух плоскостей применяют признак перпендикулярности двух плоскостей.Формулировка содержит понятия перпендикулярная прямая и плоскость. Напишем точное определение признака перпендикулярности в виде теоремы.

Теорема 1

Если одна из двух заданных плоскостей пересекает прямую, перпендикулярную другой плоскости, то заданные плоскости перпендикулярны.

Доказательство имеется в учебнике по геометрии за 10 - 11 класс, где есть подробное описание. Из признака следует, что, если плоскость перпендикулярна линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей.

Существует необходимое и достаточное условия для доказательства. Рассмотрим их для перпендикулярности двух заданных плоскостей, которое применяется в качестве проверки их перпендикулярности, находящихся в прямоугольной системе координат трехмерного пространства. Чтобы доказательство имело силу, необходимо применить определение нормального вектора плоскости, который способствует доказать необходимое и достаточное условие перпендикулярности плоскостей.

Теорема 2

Для того, чтобы перпендикулярность пересекающихся плоскостей была явной, необходимо и достаточно, чтобы нормальные векторы заданных плоскостей пересекались под прямым углом.

Доказательство

Пусть в трехмерном пространстве задана прямоугольная система координат. Если имеем n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) , являющимися нормальными векторами заданных плоскостей α и β , то необходимым и достаточным условием перпендикулярности векторов n 1 → и n 2 → примет вид

n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0

Отсюда получаем, что n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей, а для действительности перпендикулярности α и β необходимо и достаточно, чтобы скалярное произведение векторов n 1 → и n 2 → было равным нулю, а значит, принимало вид n 1 → , n 2 → = 0 ⇔ A 1 · A 2 + B 1 · B 2 + C 1 · C 2 = 0 .

Равенство выполнено.

Рассмотрим подробнее на примерах.

Пример 1

Определить перпендикулярность плоскостей, заданных в прямоугольной системе координат O x y z трехмерно пространства, заданного уравнениями x - 3 y - 4 = 0 и x 2 3 + y - 2 + z 4 5 = 1 ?

Решение

Для нахождения ответа на вопрос о перпендикулярности для начал необходимо найти координаты нормальных векторов заданных плоскостей, после чего можно будет выполнить проверку на перпендикулярность.

x - 3 y - 4 = 0 является общим уравнением плоскости, из которого можно сразу преобразовать координаты нормального вектора, равные n 1 → = (1 , - 3 , 0) .

Для определения координаты нормального вектора плоскости x 2 3 + y - 2 + z 4 5 = 1 перейдем от уравнения плоскости в отрезках к общему.

Тогда получим:

x 2 3 + y - 2 + z 4 5 ⇔ 3 2 x - 1 2 y + 5 4 z - 1 = 0

Тогда n 2 → = 3 2 , - 1 2 , 5 4 - это координаты нормального вектора плоскости x 2 3 + y - 2 + z 4 5 = 1 .

Перейдем к вычислению скалярного произведения векторов n 1 → = (1 , - 3 , 0) и n 2 → = 3 2 , - 1 2 , 5 4 .

Получим, что n 1 → , n 2 → = 1 · 3 2 + (- 3) · - 1 2 + 0 · 5 4 = 3 .

Видим, что оно не равно нулю, значит, что заданные векторы не перпендикулярны. Отсюда следует, что плоскости также не перпендикулярны. Условие не выполнено.

Ответ: плоскости не перпендикулярны.

Пример 2

Прямоугольная система координат O x y z имеет четыре точки с координатами A - 15 4 , - 7 8 , 1 , B 17 8 , 5 16 , 0 , C 0 , 0 , 3 7 , D - 1 , 0 , 0 . Проверить, перпендикулярны ли плоскости А В С и A B D .

Решение

Для начала необходимо рассчитать скалярное произведение векторов данных плоскостей. Если оно равно нулю, только в этом случае можно считать, что они перпендикулярны. Находим координаты нормальных векторов n 1 → и n 2 → плоскостей А В С и A B D .

Из заданных координат точек вычислим координаты векторов A B → , A C → , A D → . Получаем, что:

A B → = 47 8 , 19 16 , - 1 , A C → = 15 4 , 7 8 , - 4 7 , A D → = 11 4 , 7 8 , - 1 .

Нормальный вектор плоскости А В С является векторным произведением векторов A B → и A C → , а для A B D векторное произведение A B → и A D → . Отсюда получим, что

n 1 → = A B → × A C → = i → j → k → 47 8 19 16 - 1 15 4 7 8 - 4 7 = 11 56 · i → - 11 28 · j → + 11 16 · k → ⇔ n 1 → = 11 56 , - 11 28 , 11 16 n 2 → = A B → × A D → = i → j → k → 47 8 19 16 - 1 11 4 7 8 - 1 = - 5 16 · i → + 25 8 · j → + 15 8 · k → ⇔ n 2 → = - 5 16 , 25 8 , 15 8

Приступим к нахождению скалярного произведения n 1 → = 11 56 , - 11 28 , 11 16 и n 2 → = - 5 16 , 25 8 , 15 8 .

Получим: n 1 → , n 2 → = 11 56 · - 5 16 + - 11 28 · 25 8 + 11 16 · 15 8 = 0 .

Если оно равно нулю, значит векторы плоскостей А В С и A B D перпендикулярны, тогда и сами плоскости перпендикулярны.

Ответ: плоскости перпендикулярны.

Можно было подойти к решению иначе и задействовать уравнения плоскостей А В С и A B D . После нахождения координат нормальных векторов данных плоскостей можно было бы проверить на выполнимость условие перпендикулярности нормальных векторов плоскостей.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90 o .


рис. 37
Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися.

Лемма. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Определение. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в плоскости.

Говорят также, что плоскость перпендикулярна к прямой а.


рис. 38
Если прямая а перпендикулярна к плоскости , то она, очевидно, пересекает эту плоскость. В самом деле, если бы прямая а не пересекала плоскость , то она лежала бы в этой плоскости или была бы параллельна ей.

Но в том и в другом случае в плоскости имелись бы прямые, не перпендикулярные к прямой а, например прямые, параллельные ей, что невозможно. Значит, прямая а пересекает плоскость .

Связь между параллельностью прямых и их перпендикулярностью к плоскости.

Признак перпендикулярности прямой и плоскости.

Замечания.

  1. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой, и притом единственная.
  2. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.
  3. Если две плоскости перпендикулярны к прямой, то они параллельны.

Задачи и тесты по теме "Тема 5. "Перпендикулярность прямой и плоскости"."

  • Перпендикулярность прямой и плоскости
  • Двугранный угол. Перпендикулярность плоскостей - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 10 Тестов: 1

  • Перпендикуляр и наклонные. Угол между прямой и плоскостью - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 2 Заданий: 10 Тестов: 1

  • Параллельность прямых, прямой и плоскости - Параллельность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 9 Тестов: 1

  • Перпендикулярные прямые - Начальные геометрические сведения 7 класс

    Уроков: 1 Заданий: 17 Тестов: 1

Материал темы обобщает и систематизирует известные Вам из планиметрии сведения о перпендикулярности прямых. Изучение теорем о взаимосвязи параллельности и перпендикулярности прямых и плоскостей в пространстве, а также материал о перпендикуляре и наклонных целесообразно сочетать с систематическим повторением соответствующего материала из планиметрии.

Решения практически всех задач на вычисление сводятся к применению теоремы Пифагора и следствий из нее. Во многих задачах возможность применения теоремы Пифагора или следствий из нее обосновывается теоремой о трех перпендикулярах или свойствами параллельности и перпендикулярности плоскостей.

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны () (рис.28)

α – плоскость, в – перпендикулярная ей прямая, β – плоскость, проходящая через прямую в , и с – прямая, по которой пересекаются плоскости α и β.

Следствие. Если плоскость перпендикулярна к линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей

Задача 1 . Доказать, что через любую точку прямой в пространстве можно провести две различные перпендикулярные ей прямые.

Доказательство:

По аксиоме I существует точка, не принадлежащая прямой а. По теореме 2.1через точку В и прямую а можно провести плоскость α. (рис.29) По теореме 2.3 через точку А в плоскости α можно провести прямую а. По аксиоме С 1 существует точка С , не принадлежащая α. По теореме 15.1 через точку С и прямую а можно провести плоскость β. В плоскости β по теореме 2.3 через точку а можно провести прямую с а. Прямые в и с по построению имеют только одну общую точку А и обе перпендикулярны


Задача 2. Верхние концы двух вертикально стоящих столбов, удаленных на расстояние3, 4 м, соединены перекладиной. Высота одного столба 5,8 м, а другого – 3,9 м. Найдите длину перекладины.

АС = 5,8м, ВD = 3,9 м, АВ - ? (рис.30)


АЕ = АС – СЕ = АС – ВD = 5,8 – 3,9 = 1,9 (м)

По теореме Пифагора из ∆ АЕВ получаем:

АВ 2 = АЕ 2 + ЕВ 2 = АЕ 2 + СD 2 = (1,9) 2 + (3,4) 2 = 15,17 (м 2)

АВ = = 3,9 (м)

Задачи

Цель . Учиться анализировать в простейших случаях взаимное расположение объектов в пространстве, использовать при решении стереометрических задач планиметрические факты и методы .


1. Докажите, что через любую точку прямой в пространстве можно провести перпендикулярную ей прямую.

2. Прямые АВ, АС и АD попарно перпендикулярны. Найти отрезок СД, если:

1) АВ = 3см, ВС = 7см, АD = 1,5 см;

2) ВД = 9 см, АD = 5cм, ВС = 16см;

3) АВ = в, ВС = а, АD =d;

4) ВD = с, ВС = а, АD = d

3. Точка А находится на расстоянии a от вершин равностороннего треугольника со стороной а. Найдите расстояние от точки А до плоскости треугольника.

4. Докажите, что если прямая параллельна плоскости, то все ее точки находятся на одинаковом расстоянии от плоскости.

5. Телефонная проволока длиной 15 м протянута от телефонного столба, где она прикреплена на высоте 8 м от поверхности земли, к дому, где ее прикрепили на высоте 20 м. Найдите расстояние между домом и столбом, полагая, что проволока не провисает.

6. Из точки к плоскости проведены две наклонные, равные 10 см и 17 см. Разность проекций этих наклонных равна 9 см. Найти проекции наклонных.


7. Из точки к плоскости проведены две наклонные, одна из которых на 26 см больше другой. Проекции наклонных равны 12 см и 40 см. Найдите наклонные.



8. Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если они относятся как 1:2 и проекции наклонных равны 1 см и 7 см.

9. Из точки к плоскости проведены две наклонные, равные 23 см и 33 см. Найдите

расстояние от этой точки до плоскости, если проекции наклонных относятся как 2:3.

10. Найдите расстояние от середины отрезка АВ до плоскости, не пересекающей этот отрезок, если расстояние от точек а и В до плоскости равны: 1) 3, 2 см и 5, 3 см;7, 4 см и 6, 1 см; 3) a и в.

11. Решите предыдущую задачу при условии, что отрезок АВ пересекает плоскость.

12. Отрезок длиной 1 м пересекает плоскость, концы его удалены от плоскости на расстояние 0,5 м и 0, 3 м. Найдите длину проекции отрезка на плоскость..

13. Из точек А и В опущены перпендикуляры на плоскость. Найдите расстояние между точками А и В, если перпендикуляры равны 3 м и 2 м, расстояние между их основаниями равно 2,4 м, а отрезок АВ не пересекает плоскость.

14. Из точек А и В, лежащих в двух перпендикулярных плоскостях, опущены перпендикуляры АС и ВD на прямую пересечения плоскостей. Найдите длину отрезка АВ, если:1) АС = 6 м, ВD = 7 м, СD = 6 м; 2) АС = 3 м, ВD = 4 м, СD = 12 м; 3) АD = 4 м, ВС = 7 м, СD = 1 м; 4) АD = ВС = 5 м, СD = 1 м; 4) АС = а, ВD = в, СD = с; 5) АD = а, ВС = в, СD = с.

15.Из вершин А и В равностороннего треугольника АВС восставлены перпендикуляры АА 1 и ВВ 1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А 1 В 1 , если АВ = 2 м, СА 1 = 3 м, СВ 1 = 7 м и отрезок А 1 В 1 не пересекает плоскость треугольника

16. Из вершин А и В острых углов прямоугольного треугольника АВС восставлены перпендикуляры АА 1 и ВВ 1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А 1 В 1 , если А 1 С = 4 м, АА 1 = 3 м, СВ 1 = 6 м, ВВ 1 = 2 м и отрезок А 1 В 1 не пересекает плоскость треугольника.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Рассмотрим две пересекающиеся плоскости. При пересечении они образуют четыре двугранных угла с общим ребром.

Вспомним, что из себя представляет двугранный угол.

В реальности мы встречаемся с предметами, которые имеют форму двугранного угла: например, приоткрытая дверь или полураскрытая папка.

При пересечении двух плоскостей альфа и бета получим четыре двугранных угла. Пусть один из двугранных углов равен (фи), тогда второй равен (1800 -), третий, четвертый (1800-).

Рассмотрим случай, когда один из двугранных углов равен 900.

Тогда, все двугранные углы в этом случае равны по 900.

Введем определение перпендикулярных плоскостей:

Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90°.

Угол между плоскостями сигма и эпсилон равен 90 градусов, значит плоскости перпендикулярны

Приведем примеры перпендикулярных плоскостей.

Стена и потолок.

Боковая стенка и крышка стола.

Сформулируем признак перпендикулярности двух плоскостей:

ТЕОРЕМА: Если одна их двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Докажем этот признак.

По условию известно что прямая АМ лежит в плоскости α, прямая АМ перпендикулярна плоскости β,

Доказать: плоскости α и β перпендикулярны.

Доказательство:

1) Плоскости α и β пересекаются по прямой АР, при этом АМ АР, так как АМ β по условию, то есть АМ перпендикулярна к любой прямой, лежащей в плоскости β.

2) Проведем в плоскости β прямую AТ перпендикулярную AР.

Получим угол ТAМ - линейный угол двугранного угла. Но угол ТAМ = 90°, так как МА β. Значит, α β.

Что и требовалось доказать.

Из признака перпендикулярности двух плоскостей имеем важное следствие:

СЛЕДСТВИЕ: Плоскость, перпендикулярная к прямой, по которой пересекаются две плоскости, перпендикулярна к каждой из этих плоскостей.

То есть: если α∩β=с и γ с, то γ α и γ β.

Докажем это следствие: если плоскость гамма перпендикулрна к прямой с то по признаку параллельностидвух плоскостей гамма перпендикулярна к альфа. Аналогично и гамма перпендикулярна бета

Указанное следствие переформулируем для двугранного угла:

Плоскость, проходящая через линейный угол двугранного угла перпендикулярна ребру и граням этого двугранного угла. Другими словами, если мы построили линейный угол двугранного угла, то проходящая через него плоскость перпендикулярна ребру и граням этого двугранного угла.

Дано: ΔАВС, С = 90°, АС лежит в плоскости α, угол между плоскостями α и ABC = 60°, АС = 5 см, АВ = 13 см.

Найти: расстояние от точки В до плоскости α.

1) Построим ВК α. Тогда КС - проекция ВС на эту плоскость.

2) ВС АС (по условию), значит, по теореме о трех перпендикулярах (ТТП), КС АС. Следовательно, ВСК - линейный угол двугранного угла между плоскостью α и плоскостью треугольника АВС. То есть ВСК = 60°.

3) Из ΔВСА по теореме Пифагора:

Ответ ВК равно 6 корней из трех см

Практическое использование (прикладной характер) перпендикулярности двух плоскостей.

Определение. Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а, и не принадлежащими одной плоскости.

Определение. Градусной мерой двугранного угла называется градусная мера любого из его линейных углов.

Определение. Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен 90 o .

Признак перпендикулярности двух плоскостей.

Свойства.

  1. В прямоугольном параллелепипеде все шесть граней представляют собой прямоугольники.
  2. Все двугранные углы прямоугольного параллелепипеда являются прямыми
  3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Задачи и тесты по теме "Тема 7. "Двугранный угол. Перпендикулярность плоскостей"."

  • Двугранный угол. Перпендикулярность плоскостей
  • Перпендикулярность прямой и плоскости - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 10 Тестов: 1

  • Перпендикуляр и наклонные. Угол между прямой и плоскостью - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 2 Заданий: 10 Тестов: 1

  • Параллельность плоскостей - Параллельность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 8 Тестов: 1

  • Перпендикулярные прямые - Начальные геометрические сведения 7 класс

    Уроков: 1 Заданий: 17 Тестов: 1

Материал темы обобщает и систематизирует известные Вам из планиметрии сведения о перпендикулярности прямых. Изучение теорем о взаимосвязи параллельности и перпендикулярности прямых и плоскостей в пространстве, а также материал о перпендикуляре и наклонных целесообразно сочетать с систематическим повторением соответствующего материала из планиметрии.

Решения практически всех задач на вычисление сводятся к применению теоремы Пифагора и следствий из нее. Во многих задачах возможность применения теоремы Пифагора или следствий из нее обосновывается теоремой о трех перпендикулярах или свойствами параллельности и перпендикулярности плоскостей.

error: