Космологические модели связанные с полевой теорией струн. Космологические модели, связанные с полевой теорией струн булатов, николай владимирович. Что было до Большого Взрыва

Различные версии теории струн сегодня рассматриваются в качестве главных претендентов на звание всеобъемлющей универсальной теории, объясняющей природу всего сущего. А это - своего рода Священный Грааль физиков-теоретиков, занимающихся теорией элементарных частиц и космологии. Универсальная теория (она же теория всего сущего) содержит всего несколько уравнений, которые объединяют в себе всю совокупность человеческих знаний о характере взаимодействий и свойствах фундаментальных элементов материи, из которых построена Вселенная.

Сегодня теорию струн удалось объединить с концепцией суперсимметрии, в результате чего родилась теория суперструн, и на сегодняшний день это максимум того, что удалось добиться в плане объединения теории всех четырех основных взаимодействий (действующих в природе сил). Сама по себе теория суперсимметрии уже построена на основе априорной современной концепции, согласно которой любое дистанционное (полевое) взаимодействие обусловлено обменом частицами-носителями взаимодействия соответствующего рода между взаимодействующими частицами (см. Стандартная модель). Для наглядности взаимодействующие частицы можно считать «кирпичиками» мироздания, а частицы-носители - цементом.

Теория струн - направление математической физики, изучающее динамику не точечных частиц, как большинство разделов физики, а одномерных протяжённых объектов, т.е. струн.
В рамках стандартной модели в роли кирпичиков выступают кварки, а в роли носителей взаимодействия - калибровочные бозоны, которыми эти кварки обмениваются между собой. Теория же суперсимметрии идет еще дальше и утверждает, что и сами кварки и лептоны не фундаментальны: все они состоят из еще более тяжелых и не открытых экспериментально структур (кирпичиков) материи, скрепленных еще более прочным «цементом» сверхэнергетичных частиц-носителей взаимодействий, нежели кварки в составе адронов и бозонов.

Естественно, в лабораторных условиях ни одно из предсказаний теории суперсимметрии до сих пор не проверено, однако гипотетические скрытые компоненты материального мира уже имеют названия - например, сэлектрон (суперсимметричный напарник электрона), скварк и т. д. Существование этих частиц, однако, теориями такого рода предсказывается однозначно.

Картину Вселенной, предлагаемую этими теориями, однако, достаточно легко представить себе наглядно. В масштабах порядка 10Е–35 м, то есть на 20 порядков меньше диаметра того же протона, в состав которого входят три связанных кварка, структура материи отличается от привычной нам даже на уровне элементарных частиц. На столь малых расстояниях (и при столь высоких энергиях взаимодействий, что это и представить немыслимо) материя превращается в серию полевых стоячих волн, подобных тем, что возбуждаются в струнах музыкальных инструментов. Подобно гитарной струне, в такой струне могут возбуждаться, помимо основного тона, множество обертонов или гармоник. Каждой гармонике соответствует собственное энергетическое состояние. Согласно принципу относительности (см. Теория относительности), энергия и масса эквивалентны, а значит, чем выше частота гармонической волновой вибрации струны, тем выше его энергия, и тем выше масса наблюдаемой частицы.

Однако, если стоячую волну в гитарной струне представить себе наглядно достаточно просто, стоячие волны, предлагаемые теорией суперструн наглядному представлению поддаются с трудом - дело в том, что колебания суперструн происходят в пространстве, имеющем 11 измерений. Мы привыкли к четырехмерному пространству, которое содержит три пространственных и одно временное измерение (влево-вправо, вверх-вниз, вперед-назад, прошлое-будущее). В пространстве суперструн всё обстоит гораздо сложнее (см. вставку). Физики-теоретики обходят скользкую проблему «лишних» пространственных измерений, утверждая, что они «скрадываются» (или, научным языком выражаясь, «компактифицируются») и потому не наблюдаются при обычных энергиях.

Совсем уже недавно теория струн получила дальнейшее развитие в виде теории многомерных мембран - по сути, это те же струны, но плоские. Как походя пошутил кто-то из ее авторов, мембраны отличаются от струн примерно тем же, чем лапша отличается от вермишели.

Вот, пожалуй, и всё, что можно вкратце рассказать об одной из теорий, не без основания претендующих на сегодняшний день на звание универсальной теории Великого объединения всех силовых взаимодействий. Увы, и эта теория небезгрешна. Прежде всего, она до сих пор не приведена к строгому математическому виду по причине недостаточности математического аппарата для ее приведения в строгое внутреннее соответствие. Прошло уже 20 лет, как эта теория появилась на свет, а непротиворечиво согласовать одни ее аспекты и версии с другими так никому и не удалось. Еще неприятнее то, что никто из теоретиков, предлагающих теорию струн (и, тем более суперструн) до сих пор не предложил ни одного опыта, на котором эти теории можно было бы проверить лабораторно. Увы, боюсь, что до тех пор, пока они этого не сделают, вся их работа так и останется причудливой игрой фантазии и упражнениями в постижении эзотерических знаний за пределами основного русла естествознания.

Изучение свойств чёрных дыр

В 1996 г. струнные теоретики Эндрю Строминджер и Кумрун Вафа, опираясь на более ранние результаты Сасскинда и Сена, опубликовали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга». В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса чёрных дыр, а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого.

Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход. Они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путем кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции.

Имея в руках все рычаги управления микроскопической конструкцией чёрной дыры, Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд, остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий чёрной дыры - энтропией, предсказанной Бекенштейном и Хокингом, - и получили идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена.

Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остается слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу, Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг., признался в интервью в 1997 г., что «когда струнные теоретики говорят о чёрных дырах, речь идёт едва ли не о наблюдаемых явлениях, и это впечатляет».

Струнная космология

Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва, для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности, то есть дуальности малых и больших радиусов (в его тесной связи с существованием минимального размера) в теории струн, имеет значение и в космологии. В-третьих, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений.

Модель Бранденберга и Вафы

В конце 1980-х гг. Роберт Бранденбергер и Кумрун Вафа сделали первые важные шаги к пониманию того, к каким изменениям в следствиях из стандартной космологической модели приведет использование теории струн. Они пришли к двум важным выводам. Во-первых, по мере движения назад к моменту Большого взрыва температура продолжает расти до момента, когда размеры Вселенной по всем направлениям сравняются с планковской длиной. В этот момент температура достигнет максимума и начнёт уменьшаться. На интуитивном уровне нетрудно понять причину этого явления. Предположим для простоты (следуя Бранденбергеру и Вафе), что все пространственные измерения Вселенной циклические. При движении назад во времени радиус каждой окружности сокращается, а температура Вселенной увеличивается. Из теории струн мы знаем, что сокращение радиусов сначала до и затем ниже значений планковской длины физически эквивалентно уменьшению радиусов до планковской длины, сменяющемуся затем их последующим увеличением. Поскольку температура при расширении Вселенной падает, то безрезультатные попытки сжать Вселенную до размеров, меньших планковской длины, приведут к прекращению роста температуры и её дальнейшему снижению.

В результате Бранденбергер и Вафа пришли к следующей космологической картине: сначала все пространственные измерения в теории струн плотно свернуты до минимальных размеров порядка планковской длины. Температура и энергия высоки, но не бесконечны: парадоксы начальной точки нулевого размера в теории струн решены. В начальный момент существования Вселенной все пространственные измерения теории струн совершенно равноправны и полностью симметричны: все они свернуты в многомерный комок планковских размеров. Далее, согласно Бранденбергеру и Вафе, Вселенная проходит первую стадию понижения симметрии, когда в планковский момент времени три пространственных измерения отбираются для последующего расширения, а остальные сохраняют исходный планковский размер. Затем эти три измерения отождествляются с измерениями в сценарии инфляционной космологии и в процессе эволюции принимают наблюдаемую теперь форму.

Модель Венециано и Гасперини

После работы Бранденбергера и Вафы физики непрерывно продвигаются вперёд к пониманию струнной космологии. В числе тех, кто идет во главе этих исследований - Габриэле Венециано и его коллега Маурицио Гасперини из Туринского университета. Эти учёные представили свой вариант струнной космологии, который в ряде мест соприкасается с описанным выше сценарием, но в других местах принципиально отличается от него. Как Бранденбергер и Вафа, для исключения бесконечной температуры и плотности энергии, которые возникают в стандартной и инфляционной модели, они опирались на существование минимальной длины в теории струн. Однако вместо вывода о том, что в силу этого свойства Вселенная рождается из комка планковских размеров, Гасперини и Венециано предположили, что существовала доисторическая вселенная, возникшая задолго до момента, который называется нулевой точкой, и породившая этот космический «эмбрион» планковских размеров.

Исходное состояние Вселенной в таком сценарии и в модели Большого взрыва очень сильно различаются. Согласно Гасперини и Венециано, Вселенная не являлась раскаленным и плотно скрученным клубком измерений, а была холодной и имела бесконечную протяженность. Затем, как следует из уравнений теории струн, во Вселенную вторглась нестабильность, и все её точки стали, как и в эпоху инфляции по Гуту, стремительно разбегаться в стороны.

Гасперини и Венециано показали, что из-за этого пространство становилось всё более искривлённым и в результате произошел резкий скачок температуры и плотности энергии. Прошло немного времени, и трёхмерная область миллиметровых размеров внутри этих бескрайних просторов преобразилась в раскалённое и плотное пятно, тождественное пятну, которое образуется при инфляционном расширении по Гуту. Затем все пошло по стандартному сценарию космологии Большого взрыва, и расширяющееся пятно превратилось в наблюдаемую Вселенную.

Поскольку в эпоху до Большого взрыва происходило своё инфляционное расширение, решение парадокса горизонта, предложенное Гутом, оказывается автоматически встроенным в этот космологический сценарий. По выражению Венециано (в интервью 1998 г.), «теория струн преподносит нам как на блюдечке вариант инфляционной космологии».

Изучение струнной космологии быстро становится областью активных и продуктивных исследований. Например, сценарий эволюции до Большого взрыва уже не раз был поводом горячих споров, а его место в будущей космологической формулировке далеко не очевидно. Однако нет сомнений, что эта космологическая формулировка будет твёрдо опираться на понимание физиками результатов, открытых во время второй суперструнной революции. Например, до сих пор не ясны космологические следствия существования многомерных мембран. Иными словами, как изменитcя представление о первых моментах существования Вселенной в результате анализа законченной М-теории? Этот вопрос интенсивно исследуется.

Доктор физико-математических наук М. САЖИН (Государственный астрономический институт имени П. К. Штернберга МГУ), В. ШУЛЬГА (Институт космических

Теоретическая физика предлагает нам в очередной раз круто изменить представления о мире. Элементарные частицы оказались колебаниями неких микроскопических суперструн, вибрирующих в шестимерном пространстве (см. "Наука и жизнь" №№ 2, 3, 1997 г.). А в нашей Вселенной, кроме звезд, планет, пылевых и газовых туманностей, обнаружились другие, тоже совершенно невероятные объекты - космические струны. Они тянутся через всю Вселенную от одного ее горизонта до другого, скручиваются, рвутся и сворачиваются в кольца, выделяя громадное количество энергии.

Наука и жизнь // Иллюстрации

Академик Яков Борисович Зельдович работал во многих областях теоретической физики. С 60-х годов он стал заниматься проблемами астрофизики и космологии. Именно в этот период Я. Б. Зельдович создал теорию космических струн.

Эволюция замкнутой космической струны может быть очень сложной.

Плоский лист бумаги представляет собой двумерное евклидово пространство.

Волна (любая!) "не замечает" препятствия, размеры которого значительно меньше длины волны.

Световые лучи, проходящие через слой неравномерно нагретого воздуха, изгибаются. Так возникает мираж: человек принимает изображение неба с облаками за водную гладь.

"Миражи" возникают и в космосе. Там лучи света от далекого объекта изгибает поле тяготения массивной галактики - "гравитационная линза", и наблюдателю кажется, что изображение двоится.

Звездолет проходит сквозь кольцевую струну.

Так, по представлению теоретиков, происходит эволюция космических струн от момента зарождения Вселенной до наших дней.

Cо времен Альберта Эйнштейна одной из основных задач физики стало объединение всех физических взаимодействий, поиск единой теории поля. Существуют четыре основных взаимодействия: электромагнитное, слабое, сильное, или ядерное, и самое универсальное - гравитационное. У каждого взаимодействия есть свои переносчики - заряды и частицы. У электромагнитных сил - это положительные и отрицательные электрические заряды (протон и электрон) и частицы, переносящие электромагнитные взаимодействия, - фотоны. Слабое взаимодействие переносят так называемые бозоны, открытые только десять лет назад. Переносчики сильного взаимодействия - кварки и глюоны. Гравитационное взаимодействие стоит особняком - это проявление кривизны пространства-времени.

Эйнштейн работал над объединением всех физических взаимодействий более тридцати лет, но положительного результата так и не достиг. Только в 70-е годы нашего столетия после накопления большого количества экспериментальных данных, после осознания роли идей симметрии в современной физике С. Вайнберг и А. Салам сумели объединить электромагнитные и слабые взаимодействия, создав теорию электрослабых взаимодействий. За эту работу исследователи совместно с Ш. Глэшоу (который теорию расширил) были удостоены Нобелевской премии по физике 1979 года.

Многое в теории электрослабых взаимодействий было странным. Уравнения поля имели непривычный вид, а массы некоторых элементарных частиц оказались непостоянными величинами. Они появлялись в результате действия так называемого динамического механизма возникновения масс при фазовом переходе между различными состояниями физического вакуума. Физический вакуум - не просто "пустое место", где отсутствуют частицы, атомы или молекулы. Структура вакуума пока неизвестна, ясно только, что он представляет собой наинизшее энергетическое состояние материальных полей с чрезвычайно важными свойствами, которые проявляются в реальных физических процессах. Если, например, этим полям сообщить очень большую энергию, произойдет фазовый переход материи из ненаблюдаемого, "вакуумного", состояния в реальное. Как бы "из ничего" появятся частицы, имеющие массу. На гипотезах о возможных переходах между различными состояниями вакуума и понятиях симметрии основана идея единой теории поля.

Проверить эту теорию в лаборатории удастся, когда энергия ускорителей достигнет 10 16 ГэВ на одну частицу. Произойдет это не скоро: сегодня она пока не превышает 10 4 ГэВ, и строительство даже таких "маломощных" ускорителей - мероприятие чрезвычайно дорогостоящее даже для всего мирового научного сообщества. Однако энергии порядка 10 16 ГэВ и даже гораздо выше были в ранней Вселенной, которую физики часто называют "ускорителем бедного человека": изучение физических взаимодействий в ней позволяет проникнуть в недоступные нам области энергий.

Утверждение может показаться странным: как можно исследовать то, что происходило десятки миллиардов лет назад? И тем не менее такие "машины времени" существуют - это современные мощные телескопы, позволяющие изучать объекты на самой границе видимой части Вселенной. Свет от них идет к нам 15-20 миллиардов лет, мы сегодня видим их такими, какими они были именно в ранней Вселенной.

Теория объединения электромагнитных, слабых и сильных взаимодействий предсказала, что в природе есть большое количество частиц, никогда не наблюдавшихся экспериментально. Это не удивительно, если учесть, какие невообразимые энергии нужны для их рождения во взаимодействиях привычных нам частиц. Другими словами, для наблюдений за их проявлениями опять необходимо обращать свой взор на раннюю Вселенную.

Некоторые такие частицы нельзя даже назвать частицами в привычном нам смысле слова. Это одномерные объекты с поперечным размером около 10 -37 см (значительно меньше атомного ядра - 10 -13 см) и длиной порядка диаметра нашей Вселенной - 40 миллиардов световых лет (10 28 см). Академик Я. Б. Зельдович, предсказавший существование таких объектов, дал им красивое название - космические струны, поскольку они действительно должны напоминать струны гитары.

Создать их в лаборатории невозможно: у всего человечества не хватит энергии. Другое дело - ранняя Вселенная, где условия для рождения космических струн возникли естественным путем.

Итак, струны во Вселенной могут быть. И отыскать их придется астрономам.

Башня аризонской обсерватории Кит-Пик растворилась в черноте мартовской ночи. Ее огромный купол медленно поворачивался - глаз телескопа искал две звездочки в созвездии Льва. Астроном из Принстона Э. Тернер предполагал, что это квазары, таинственные источники, излучающие в десятки раз больше энергии, чем самые мощные галактики. Они так бесконечно далеки, что едва видны в телескоп. Наблюдения закончились. Тернер ждал, когда ЭВМ расшифрует оптические спектры, даже не предполагая, что через несколько часов, рассматривая с коллегами свежие распечатки, сделает сенсационное открытие. Телескоп обнаружил космический объект, о существовании которого ученые и не догадывались, хотя размеры его настолько велики, что их трудно себе представить.

Впрочем, рассказ об этой истории лучше начать с другой мартовской ночи, вернувшись на много лет назад.

В 1979 году астрофизики, изучая радиоисточник в созвездии Большой Медведицы, отождествили его с двумя слабыми звездочками. Расшифровав их оптические спектры, ученые поняли, что открыли еще одну пару неизвестных квазаров.

Вроде бы ничего особенного - искали один квазар, а нашли сразу два. Но астрономов насторожили два необъяснимых факта. Во-первых, угловое расстояние между звездами составляло всего шесть угловых секунд. И хотя в каталоге уже было больше тысячи квазаров, столь близкие пары еще не встречались. Во-вторых, спектры у источников полностью совпали. Вот это-то и оказалось главным сюрпризом.

Дело в том, что спектр каждого квазара уникален и неповторим. Порой их даже сравнивают с дактилоскопическими картами - как нет одинаковых отпечатков пальцев у разных людей, так не могут и совпадать спектры двух квазаров. И если уж продолжить сравнение, то совпадение оптических спектров у новой пары звезд было просто фантастическим - словно сошлись не только отпечатки пальцев, но даже и мельчайшие царапинки на них.

Одни астрофизики сочли "близнецов" парой разных, не связанных квазаров. Другие выдвинули смелое предположение: квазар один, а его двойное изображение - просто "космический мираж". О земных миражах, возникающих в пустынях и на морях, наслышан каждый, а вот наблюдать подобное в космосе еще никому не удавалось. Однако это редкое явление должно возникать.

Космические объекты с большой массой создают вокруг себя сильное гравитационное поле, которое изгибает идущие от звезды лучи света. Если поле неоднородно, лучи изогнутся под разными углами, и вместо одного изображения наблюдатель увидит несколько. Понятно, что чем сильнее искривлен луч, тем больше и масса гравитационной линзы. Гипотеза нуждалась в проверке. Долго ждать не пришлось, линзу нашли осенью того же года. Эллиптическую галактику, вызывающую двойное изображение квазара, сфотографировали почти одновременно в двух обсерваториях. А вскоре астрофизики обнаружили еще четыре гравитационные линзы. Позднее удалось обнаружить даже эффект "микролинзирования" - отклонение световых лучей очень маленькими (по космическим меркам) темными объектами масштаба нашей Земли или планеты Юпитер (см. "Наука и жизнь" № 2, 1994 г.).

И вот Э. Тернер, получив похожие друг на друга, как две капли воды, спектры, открывает шестую линзу. Казалось бы, событие заурядное, какая уж тут сенсация. Но на этот раз двойные лучи света образовали угол в 157 секунд дуги - в десятки раз больший, чем раньше. Такое отклонение могла создать лишь гравитационная линза с массой в тысячу раз большей, чем любая доселе известная во Вселенной. Вот почему астрофизики поначалу и предположили, что обнаружен космический объект невиданных размеров - что-то вроде сверхскопления галактик.

Эту работу по важности, пожалуй, можно сравнить с такими фундаментальными результатами, как обнаружение пульсаров, квазаров, установление сетчатой структуры Вселенной. "Линза" Тернера, безусловно, одно из выдающихся открытий второй половины нашего века.

Разумеется, интересна не сама находка - еще в 40-х годах А. Эйнштейн и советский астроном Г. Тихов почти одновременно предсказали существование гравитационной фокусировки лучей. Непостижимо другое - размер линзы. Оказывается, в космосе бесследно скрываются огромные массы, в тысячу раз превосходящие все известные, и на их поиск ушло сорок лет.

Работа Тернера пока чем-то напоминает открытие планеты Нептун французским астрономом Леверье: новая линза существует тоже лишь на кончике пера. Она вычислена, но не обнаружена.

Конечно, пока не появятся достоверные факты, скажем, фотоснимки, можно делать самые различные предположения и допущения. Сам Тернер, например, считает, что линзой может оказаться "черная дыра" размером в тысячу раз больше нашей Галактики - Млечного Пути. Но если такая дыра существует, она должна вызывать двойное изображение и у других квазаров. Ничего подобного астрофизики пока не увидели.

И тут внимание исследователей привлекла давняя и очень любопытная гипотеза космических струн. Постичь ее трудно, представить наглядно просто невозможно: струны можно только описать сложными математическими формулами. Эти загадочные одномерные образования не излучают света и обладают огромной плотностью - один метр такой "ниточки" весит больше Солнца. А если их масса так велика, то и гравитационное поле, пусть даже растянутое в линию, должно значительно отклонять световые лучи. Однако линзы уже сфотографированы, а космические струны и "черные дыры" пока существуют лишь в уравнениях математиков.

Из этих уравнений следует, что возникшая сразу после Большого взрыва космическая струна должна быть "замкнута" на границы Вселенной. Но границы эти так далеки, что середина струны их "не чувствует" и ведет себя, как кусок упругой проволоки в свободном полете или как леска в бурном потоке. Струны изгибаются, перехлестываются и рвутся. Оборванные концы струн тут же соединяются, образуя замкнутые куски. И сами струны, и отдельные их фрагменты летят сквозь Вселенную со скоростью, близкой к скорости света.

Согласно общей теории относительности масса вызывает искривление пространства-времени. Космическая струна тоже искривляет его, создавая вокруг себя так называемое конусовидное пространство. Представить себе трехмерное пространство, свернутое в конус, вряд ли удастся. Обратимся поэтому к простой аналогии. Возьмем плоский лист бумаги - двумерное евклидово пространство. Вырежем из него сектор, скажем, в 10 градусов. Свернем лист в конус так, чтобы концы сектора прилегали один к другому. Мы вновь получим двумерное, но уже неевклидово, пространство. Точнее, оно будет евклидовым везде, за исключением одной точки - вершины конуса. Обход по любому замкнутому контуру, не охватывающему вершину, приводит к повороту на 360 градусов, а если обойти конус вокруг его вершины, оборот будет на 350 градусов. Это и есть одна из характеристик неевклидовости пространства.

Нечто подобное возникает и в нашем трехмерном пространстве в непосредственной близости от струны. Вершина каждого конуса лежит на струне, только "вырезанный" ею сектор мал - несколько угловых минут. Именно на такой угол струна своей чудовищной массой искривляет пространство, и на этом угловом расстоянии видна парная звезда - "космический мираж". И отклонение, которое создает "линза" Тернера, - около 2,5 угловых минут - очень хорошо соответствует теоретическим оценкам. На всех остальных известных нам линзах угловое расстояние между изображениями не превышает угловых секунд или даже долей секунд. Самое интересное, что эффект гравитационной линзы на струне можно увидеть и без телескопа: разрешающая способность человеческого глаза - примерно половина угловой минуты. Нужно только знать, где искать, и отличать "миражи" от реальных объектов.

Из чего же состоит космическая струна? Это не материя, не цепочка каких-то частиц, а особый вид вещества, чистая энергия некоторых полей - тех самых полей, которые объединяют электромагнитные, слабые и ядерные взаимодействия. Плотность их энергии колоссальна (10 16 ГэВ) 2 , а поскольку масса и энергия связаны знаменитой формулой E = mc 2 , струна оказывается такой тяжелой: ее кусочек, по длине равный размеру элементарной частицы массой около 10 -24 г, весит 10 -10 г. Силы натяжения в ней тоже очень велики: по порядку величины они составляют 10 38 кгс. Масса нашего Солнца - около 2 . 10 30 кг, значит, каждый метр космической струны растягивают силы, равные весу ста миллионов Солнц. Такие большие натяжения приводят к интересным физическим явлениям.

Будет ли струна взаимодействовать с веществом? Вообще говоря, будет, но довольно странным образом. Диаметр струны - 10 -37 см, а, скажем, электрона - несравненно больше: 10 -13 см. Любая элементарная частица одновременно и волна, которая по порядку величины равна ее размерам. Волна не замечает препятствия, если длина волны значительно больше его размеров: длинные радиоволны огибают дома, а световые лучи дают тень даже от очень маленьких предметов. Сравнивать струну с электроном - все равно, что исследовать взаимодействие веревки диаметром 1 сантиметр с галактикой размером 100 килопарсек. Исходя из здравого смысла, галактика вроде бы просто не должна веревку заметить. Но веревка-то эта весит больше всей галактики. Поэтому взаимодействие все-таки произойдет, но оно будет похоже на взаимодействие электрона с магнитным полем. Поле закручивает траекторию электрона, у него появляется ускорение, и электрон начинает излучать фотоны. При взаимодействии элементарных частиц со струной тоже возникнет электромагнитное излучение, но его интенсивность будет настолько мала, что струну по нему обнаружить не удастся.

Зато струна может взаимодействовать сама с собой и с другими струнами. Пересечение или самопересечение струн приводит к значительному выделению энергии в виде стабильных элементарных частиц - нейтрино, фотонов, гравитонов. Источником этой энергии служат замкнутые кольца, которые возникают при самопересечениях струн.

Кольцевые струны - интереснейший объект. Они нестабильны и распадаются за некоторое характерное время, которое зависит от их размеров и конфигурации. При этом кольцо теряет энергию, которая берется из вещества струны и уносится потоком частиц. Кольцо уменьшается, стягивается, и, когда его диаметр доходит до размера элементарной частицы, струна распадается взрывным образом за 10 -23 секунды с выделением энергии, эквивалентной взрыву 10 Гигатонн (10 10 т) тротила.

Физика кольцевых струн очень хорошо вписалась в одну любопытную теорию - так называемую теорию зеркального мира. Эта теория утверждает, что у каждого сорта элементарных частиц существует партнер. Так, обычному электрону соответствует зеркальный электрон (не позитрон!), который тоже имеет отрицательный заряд, обычному протону соответствует положительный зеркальный протон, обычному фотону - зеркальный фотон и так далее. Эти два сорта вещества никак не связаны: в нашем мире не видны зеркальные фотоны, мы не можем регистрировать зеркальные глюоны, бозоны и прочие переносчики взаимодействий. Но гравитация остается единой для обоих миров: зеркальная масса искривляет пространство так же, как и масса обычная. Другими словами, могут существовать структуры типа двойных звезд, в которых один компонент - обычная звезда нашего мира, а другой - звезда из мира зеркального, которая для нас невидима. Такие пары звезд действительно наблюдаются, и невидимый компонент обычно считают "черной дырой" или нейтронной звездой, которые не излучают света. Однако он может оказаться звездой из зеркального вещества. И если эта теория справедлива, то кольцевые струны служат проходом из одного мира в другой: пролет сквозь кольцо равноценен повороту частиц на 180 о, их зеркальному отражению. Наблюдатель, пройдя через кольцо, поменяет свою зеркальность, попадет в другой мир и исчезнет из нашего. Тот мир не будет простым отражением нашей Вселенной, в нем будут совсем другие звезды, галактики и, возможно, совсем другая жизнь. Вернуться путешественник сможет, пролетев сквозь это же (или любое другое) кольцо обратно.

Отзвуки этих идей мы, как это ни удивительно, находим в многочисленных сказках и легендах. Их герои попадают в другие миры, спускаясь в колодец, проходя через зеркало или через таинственную дверь. Кэрроловская Алиса, пройдя сквозь зеркало, попадает в мир, населенный шахматными и карточными фигурами, а упав в колодец, встречает разумных зверюшек (или тех, кого она приняла за них). Интересно, что математик Доджсон заведомо не мог знать о теории зеркального мира - она была создана в 80-х годах российскими физиками.

Искать струны можно разными методами. Во-первых, по эффекту гравитационного линзирования, как это сделал Э. Тернер. Во-вторых, можно измерять температуру реликтового излучения перед струной и за нею - она будет различной. Эта разница невелика, но вполне доступна современной аппаратуре: она сравнима с уже измеренной анизотропией реликтового излучения (см. "Наука и жизнь" № 12, 1993 г.).

Есть и третий способ обнаруживать струны - по их гравитационному излучению. Силы натяжения в струнах очень велики, они значительно больше сил давления в недрах нейтронных звезд - источниках гравитационных волн. Наблюдатели собираются регистрировать гравитационные волны на приборах типа детекторов LIGO (США), VIRGO (Европейский детектор) и AIGO (Австралия), которые начнут работать уже в начале следущего века. Одна из задач, поставленных перед этими приборами, - детектирование гравитационного излучения от космических струн.

И если все три метода одновременно покажут, что в некой точке Вселенной имеется что-то, укладывающееся в современную теорию, можно будет достаточно уверенно утверждать, что этот невероятный объект обнаружен. Пока же единственной реальной возможностью наблюдать проявления космических струн остается эффект гравитационного линзирования на них.

Сегодня многие обсерватории мира ведут поиски гравитационных линз: изучая их, можно приблизиться к разгадке главной тайны Вселенной - понять, как она устроена. Для астрономов линзы служат гигантскими измерительными линейками, с помощью которых предстоит определить геометрию космического пространства. Пока неизвестно, замкнут ли наш мир, как глобус или поверхность футбольного мяча, или открыт в бесконечность. Изучение линз, в том числе струнных, позволит достоверно узнать это.

1

Рассматриваются космологические решения уравнений движения для эффективных полевых мод в струнной сигма – модели Вселенной. Построены космологические решения для изотропной Вселенной на D – бране. Показано, что решение дефляционного типа в струнной метрике совпадает с решением Фридмана в метрике расширяющейся Вселенной.

теория струн

уравнения гравитационного поля

искривленное пространство – время

D – брана

расширяющаяся Вселенная

космологические решения Фридмана

1. Аshtekar А., Petkov V. (ed.). Springer Handbook of Spacetime. Springer-Verlag. Berlin – Heidelberg, 2014. – P. 1–839.

2. Гришкан Ю.С. Влияние нарушения лоренц-инвариантности на физические процессы в поздней Вселенной и жёсткое космическое гамма-излучение / А.А. Петрухин, М.Х. Хоконов // Сборник трудов 5-ой БМШ ЭТФ-2004. – М: МИФИ, 2005. – том 2. – С. 68–78.

3. Ellis J.R., Mavromatos N.E. and D.V. Nanopoulos, Physical Review Letters, – 1992. – v. B 293, p. 37–42/.

4. Antoniadis I., Bachas C., Ellis J.R., D.V. Nanopoulos. Liouville strings evidence. Physical Review Letters -1988- v. B 211 – p. 393- 397.

5. Гришкан Ю.С.// Сборник трудов 6-ой БМШ ЭТФ-2005 том 2 – 2005, – Москва, МИФИ – C. 72–86.

6. John Ellis, N.E. Mavromatos and D.V. Nanopoulos. The string coupling accelerates the expansion of universe./ . – 2005. – P. 1–6.

7. Хриплович И.Б. Общая теория относительности: учебн. для вузов-1 изд, – М: Институт компьютерных исследований, 2002. – С. 1–128.

8. Ландау Л.Д., Лифшиц Е.М. Теория поля: учебн. для вузов – 4 изд. – М: Наука,1988. – С. 1–503.

Как правило, космологические решения, описывающие эволюцию Вселенной, строятся для полей (гравитационного поля и поля темной энергии), которые описывают пространство-время расширяющейся Вселенной на разных стадиях эволюции. Однако, в последнее время возникла уверенность в том, что связанные с тем, что теория поля как классическая, так и квантовая не описывает некоторых существенных свойств наблюдаемого макроскопического мира и в частности, квантовые флуктуации.

Более фундаментальной структурой, чем полевая, является струнная структура пространства-времени , . В этой теории струны занимают место полей и привлекаются для описания, как элементарных частиц, так и квантовых флуктуаций вакуума.

Уравнения движения для эффективных полевых мод в струнной сигма - модели согласно имеют вид:

где μ, ν,.. = 0,1,2,3, G μν - метрика на струне, R μν - эйнштейновская кривизна пространства-времени на бране, Ф - скалярное нелинейное дилатонное поле, H μνρ - антисимметричный тензор, описывающий псевдоскалярное поле B, α’ постоянная - наклона Редже.

Совершенно нетривиальным является вопрос построения космологических решений в этой модели. Если в полевой модели время определяется одновременно с полем, то в эффективной модели струн Лиувилля в качестве времени выступает само дилатонное поле Ф - одно из фоновых полей модели. Поэтому необходимо отождествление этого псевдовремени Ф с мировым временем t. В ряде работ , получена связь между t и Ф:

. (2)

В результате, как показано в эйнштейновское время в расширяющейся Вселенной связано со временем на мировой бране струнной сигма-модели соотношением

где c 1,0 - положительные константы.

При построении решений уравнений (1), динамическая эволюция этих решений прослеживается во времени t D - браны, для которой и справедливы уравнения (1). Любое точное космологическое решение может быть переведено из этого времени во время наблюдаемой нестационарной эйнштейновской вселенной с помощью формулы (3). Основной трудностью в построении струнной космологии является трудность, связанная с классификацией стадий динамической эволюции струнной структуры. Эта проблема связана с тем, что аппарат, привлекаемый для описания эволюции струнной структуры во времени содержит характерные черты двух разных подходов к описанию микро и макромира - теории рассеяния и динамической теории эволюции во времени .

Отражением этой дилеммы в математическом аппарате теории является отсутствие функциональной динамической связи между временем рассеяния частицы на D - бране, которое зафиксировано вструнной метрике G ik (t) (и в котором описывается динамическая эволюция мира на бране) со временем расширяющейся Вселенной.

Наша идея состоит в построении космологических решений во времени t с последующим переводом их в космологическое время наблюдаемого мира t E по формуле (3). Если при этом будут получены физически осмысленные известные космологические решения, то тем самым удастся построить последовательность во времени эволюции мира на бране, соответствующего эволюции коллективных мод струнной космологической модели с учетом флуктуаций геометрии мира.

Совершим внешне парадоксальный шаг. Построим космологические решения, описывающие стадию инфляции на бране. Для чего согласно отожествим дилатонное поле со временем по формуле:

где Q - константа, называемая «центральный заряд браны»

Для удобства положим постоянную наклона Редже α’ = 1. Тогда согласно (1) и (4) уравнения примут вид:

. (5)

Решение для поля B будем искать, как и в работе в виде:

где β = const.

Зададим метрику на D-бране в стандартном 4-м космологическом виде

Тогда детерминант метрики можно представить в виде:

Таким образом, напряженность псевдоскалярного поля можно записать в виде

где E μνρσ - 4-мерный ковариантный антисимметричный символ Леви - Чивита.

Следуя (6) и (11), получаем:

Теперерь уравнения (1), описывающие эволюцию мира во времени D-браны упрощаются:

(14)

В результате расчетов получим далее компоненты тензоров R 00 , R ij как функции масштабного фактора модели a(t) и вычислим его. Количество независимых констант модели может быть уменьшено, если предположить, что временное направление на бране не искривлено R 00 = 0 и центральный заряд на бране выражен так, чтобы решение имело инфляционный характер:

Тогда компоненты тензора кривизны Риччи примут вид :

где точкой обозначена производная по времени

Преобразуем произведение напряженностей поля:

Таким образом, можно записать на основании (17) и (18):

(19)

Будем искать решение этих космологических уравнений в виде:

где - неизвестные константы.

Подставляя эти формулы в (19), (20), получим следующие соотношения между зависимыми константами модели:

Тогда космологические решения принимают вид:

Построенное решение описывает быстрое экспоненциальное сжатие (дефляцию Вселенной на D-бране). Теперь необходимо перевести эти решения из времени на бране в эйнштейновское время расширения Вселенной. Для этого используем соотношение(3).

Расcчитаем выражение для масштабного фактора a(t E) в наблюдаемой Вселенной.

Из (3), (24) следует

Константа c 1 является тогда началом отсчёта времени t E . Само эйнштейновское космологическое время

Введём обозначения, принятые в теории космологических моделей Фридмана. Обозначим момент начала расширения Вселенной как t 0 = c 1 . Тогда

Из (27), (28) следует

Решение (29) есть космологическое решение Фридмана для физического времени t E , описывающее расширение Вселенной на этапе динамического преобладания вещества над темной материей, т.е. стадия быстрого сжатия («дефляции» D-браны) соответствует, для наблюдателя, связанного с веществом, образующим расширяющийся мир, степенному расширению Вселенной по закону Фридмана в Общей Теории Относительности Эйнштейна , .

Построенное решения (29) позволяет связать заключительную стадию эволюции расширяющегося мира с одной из стадий динамической эволюции, входящих в его состав нелокальных дефектов, описывающих квантовые флуктуации метрики. А именно, дефляционное поведение нестационарной метрики D-браны соответствует расширению включающего внешнего мира по закону Фридмана для барионной материи.

Библиографическая ссылка

Гришкан Ю.С. КОСМОЛОГИЧЕСКОЕ РЕШЕНИЕ СТРУННОЙ СИГМА – МОДЕЛИ ВСЕЛЕННОЙ НА СТАДИИ ПРЕОБЛАДАНИЯ ВЕЩЕСТВА НАД ИЗЛУЧЕНИЕМ // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 12-1. – С. 31-33;
URL: https://applied-research.ru/ru/article/view?id=7809 (дата обращения: 15.06.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Фактором, сильно затрудняющим понимание струнной космологии, является понимание струнных теорий. Струнные теории и даже М-теория являются лишь предельными случаями некой большей, более фундаментальной теории.
Как уже было сказано, струнная космология задает несколько важных вопросов:
1. Может ли струнная теория сделать какие-либо предсказания, касающиеся физики Большого Взрыва?
2. Что происходит с дополнительными измерениями?
3. Есть ли инфляция в рамках струнной теории?
4. Что может струнная теория рассказать о квантовой гравитации и космологии?

Струнная космология низких энергий

Большая часть материи во Вселенной находится в форме неизвестной нам темной материи. Одним из основных кандидатов на роль темной материи являются так называемые вимпы , слабовзаимодействующие массивные частицы (WIMP - W eakly I nteracting M assive P article). Основным же кандидатом на роль вимпа является кандидат от суперсимметрии . Минимальная Суперсимметричная Стандартная Модель (МССМ, или в англ. транскрипции MSSM - M inimal S upersymmetric S tandard M odel) предсказывает существование частицы со спином 1/2 (фермиона) называемого нейтралино , являющегося фермионным суперпартнером электрически нейтральных калибровочных бозонов и Хиггсовских скаляров. Нейтралино должны иметь большую массу, но при этом очень слабо взаимодействовать с другими частицами. Они могут составить значительную часть плотности во Вселенной и при этом не излучать свет, что делает их хорошим кандидатом на роль темной материи во Вселенной
Струнные теории требуют суперсимметрию, так что в принципе, если нейтралино будут открыты и окажется, что именно из них и состоит темная материя, это было бы неплохо. Но если суперсимметрия не нарушена, то фермионы и бозоны тождественно равны друг другу, а это не так в нашем мире. Действительно сложной частью всех суперсимметричных теорий является то, как нарушить суперсиметрию, но при этом не потерять все те преимущества, которые она дает.
Одной из причин, почему физики-струнщики и физики-элементарщики любят суперсимметричные теории, является то, что в рамках суперсимметричных теорий получается нулевая полная энергия вакуума, поскольку фермионный и бозонный вакуумы взаимосокращают друг друга. А если суперсимметрия нарушена, то бозоны и фермионы уже не тождественны друг другу, и такого взаимосокращения уже не происходит.
Из наблюдений далеких сверхновых с хорошей точностью следует, что расширение нашей Вселенной (по крайнем мере сейчас) ускоренно из-за присутствия чего-либо типа энергии вакуума или космологической постоянной. Так что независимо от того, как суперсимметрия была нарушена в струнной теории, необходимо, чтобы в итоге получалось "правильное" количество энергии вакуума для описания нынешнего ускоренного расширения. И это вызов теоретикам, поскольку пока все способы нарушения суперсимметрии дают слишком много вакуумной энергии.

Космология и дополнительные измерения

Струнная космология очень запутана и сложна в основном из-за присутствия шести (или даже семи в случае М-теории) дополнительных пространственных измерений, которые требуются для квантовой согласованности теории. представляют собой вызов уже и в рамках самой струнной теории, а с точки зрения космологии эти дополнительные измерения эволюционируют в соответствии с физикой Большого Взрыва и того, что было до него. Тогда что же удерживает дополнительные измерения от того, чтобы расшириться и стать такими же большими, как три наши пространственных измерения?
Однако есть поправочный фактор к поправочному фактору: суперструнная дуальная симметрия известная как T-дуальность. Если пространственное измерение свернуто до окружности радиуса R, результирующая струнная теория окажется эквивалентной другой другой струнной теории с пространственным измерением, свернутым до окружности радиуса L st 2 /R, где L st это струнный масштаб длин. Для многих из этих теорий, когда радиус дополнительного измерения удовлетворяет условию R = L st , струнная теория получает дополнительную симметрию с некоторыми массивными частицами, которые становятся безмассовыми. Это называется самодуальной точкой и она важна по многим другим причинам.
Эта дуальная симметрия приводит к очень интересному предположению относительно Вселенной до Большого Взрыва - такая струнная Вселенная начинается с плоского, холодного и очень маленького состояния вместо того, чтобы быть искривленной, горячей и очень маленькой . Эта ранняя Вселенная очень неустойчива и начинает коллапсировать и сжиматься, пока не достигает самодуальной точки, после чего она нагревается и начинает расширяться и в результате расширения приводит к нынешней наблюдаемой Вселенной. Преимуществом этой теории является то, что она включает описанное выше струнное поведение Т-дуальности и самодуальной точки, так что эта теория вполне является теорией струнной космологии.

Инфляция или столкновение гигантских бран?

Что струнная теория предсказывает по поводу источника вакуумной энергии и давления, необходимых для осуществления ускоренного расширения во время инфляционного периода? Скалярные поля, которые могли бы вызвать инфляционное расширение Вселенной, на масштабах Теории Большого Объединения могут оказаться вовлеченными в процесс нарушения симметрии на масштабах немного выше электрослабого, определения констант связи калибровочных полей, а может даже посредством них получается энергия вакуума для космологической постоянной. В струнных теориях есть составные части для построения моделей с нарушением суперсимметрии и инфляцией, но необходимо собрать все эти составные части так, чтобы они работали вместе, а это все еще, как говорят, в разработке.
Сейчас одной из альтернативных инфляции моделей является модель со столкновением гигантских бран , известная еще как Экпиротическая Вселенная или же Большой Хлопок . В рамках это модели все начинается с холодного, статичного пятимерного пространства-времени которое очень близко к тому, чтобы быть полностью суперсимметричным. Четыре пространственных измерения ограничены трехмерными стенами или три-бранами , и одна из этих стен и является пространством, в котором мы живем. Вторая брана сокрыта от нашего восприятия.
В соответствии с этой теорией, есть еще одна три-брана, "потерянная" где-то между двумя граничными бранами в четырехмерном объемлющем пространстве, и когда эта брана соударяется с браной, на которой мы живем, то выделяющаяся от этого столкновения энергия разогревает нашу брану и в нашей Вселенной начинается Большой Взрыв по правилам, описанным выше.
Это предположение достаточно ново, так что посмотрим, выдержит ли оно более точные проверки.

Проблема с ускорением

Проблема с ускоренным расширением Вселенной это фундаментальная проблема не только в рамках струнной теории, но даже и в рамках традиционной физики элементарных частиц. В моделях вечной инфляции ускоренное расширение Вселенной неограниченно. Это неограниченное расширение ведет к ситуации, когда гипотетический наблюдатель, вечно путешествующий по Вселенной, никогда не сможет увидеть части событий во Вселенной.
Граница между регионом, который наблюдатель сможет увидеть и тем, который он увидеть не сможет, называется горизонтом событий наблюдателя. В космологии горизонт событий подобен горизонту частиц , но за тем исключением, что он в будущем, а не в прошлом.
С точки зрения человеческой философии или внутренней согласованности Эйнштейновской теории относительности, проблемы космологического горизонта событий попросту нет. Ну и что что мы не сможем никогда увидеть некоторые уголки нашей Вселенной, даже если мы и будем жить вечно?
Но проблема космологического горизонта событий является основной технической проблемой в физике высоких энергий из-за определения релятивистской квантовой теории в терминах набора амплитуд рассеяния, называемого S-матрицей . Одним из фундаментальных предположений квантовых релятивистских теорий и теорий струн является то, что приходящие и уходящие состояния бесконечно разделены во времени, и что они, таким образом, ведут себя как свободные невзаимодействующие состояния.
Присутствие же горизонта событий предполагает конечную хокинговскую температуру, таким образом, условия для определения S-матрицы уже не могут быть выполнены. Отсутствие S-матрицы и есть та формальная математическая проблема, при этом она возникает не только в струнной теории, но так же и в теориях элементарных частиц.
Некоторые недавние попытки разрешить эту проблему привлекали квантовую геометрию и изменение скорости света. Но эти теории все еще в разработке. Однако большинство экспертов сходятся на том, что все можно разрешить без привлечения таких радикальных мер.

Миф о начале време Габриель Венециано


Согласно теор ии струн, Большой взрыв был не началом образования Вселенной, а лишь следствием ее предыдущего состояния.

Был ли Большой взрыв началом времени или Вселенная существовала и до него? Лет десять назад такой вопрос казался нелепым. В размышлени ях о том, что было до Большого взрыва, космологи видели не больше смысл а, чем в поисках пути, идущего от Северного полюса на север. Но развитие теор етической физики и, в частности, появление теор ии струн заставило ученых снова задуматься о предначальной эпохе.

Вопрос о начале начал занимал философов и богословов с давних времен. Он переплетается с множеством фундаментальных проблем, нашедших свое отражение в знаменитой картине Поля Гогена "D"ou venons-nous? Que sommes-nous? Ou allons-nous?" ("Откуда мы пришли? Кто мы такие? Куда мы идем?"). Полотно изображает извечный цикл: рождение, жизнь и смерть - происхождение, идентифи кация и предназначение каждого индивидуума. Пытаясь разобраться в своем происхождении, мы возводим свою родословную к минувшим поколениям, ранним формам жизни и протожизни, химическим элементам, возникшим в молодой Вселенной, и, наконец, к аморфной энерги и, некогда заполнявшей пространство. Уходит ли наше фамильное древо корнями в бесконечность или космос так же не вечен, как и мы?

ОБЗОР: СТРУННАЯ КОСМОЛОГИЯ
  • С давних пор философы спорят о том, есть ли у Вселенной определенное происхождение или она существовала всегда. Общая теор ия относительности подразумевает конечность бытия - расширяющаяся Вселенная должна была возникнуть в результате Большого взрыва.
  • Однако в самом начале Большого взрыва теор ия относительности не действовала, поскольку все происходившие в тот момент процессы носили квантовый характер. В теор ии струн, которая претендует на звание квантовой теор ии гравитации, вводится новая фундаментальная физическая постоянная - минимальный квант длины. В результате старый сценарий Вселенной, рожденной в Большом взрыве, становится несостоятельным.
  • Большой взрыв все же имел место, но плотность материи в тот момент не была бесконечной, а Вселенная, возможно, существовала и до него. Симметрия теор ии струн предполагает, что у времени нет ни начала, ни конца. Вселенная могла возникнуть почти пустой и сформироваться к моменту Большого взрыва или пройти несколько циклов гибели и возрождения. В любом случае эпоха до Большого взрыва оказала огромное влияние на современный космос.
  • Еще древние греки ожесточенно спорили о происхождении времени. Аристотель отвергал идею о наличии некоего начала, объясняя это тем, что из ничего ничто не возникает. А поскольку Вселенная не могла возникнуть из небытия, значит, она существовала всегда. Таким образом, время должно бесконечно простираться в прошлое и в будущее. Христианские богословы отстаивали противоположную точку зрения. Так, Блаженный Августин утверждал, что Бог существует вне пространства и времени и может создавать их точно так же, как и другие аспекты нашего мира. На вопрос "Что Бог делал прежде, чем создал мир?" знаменитый теолог отвечал: "Время само является частью божьего творения, просто не было никакого прежде!"

    Современные космологи пришли к похожему заключению на основании общей теор ии относительности Эйнштейна, согласно которой пространство и время - мягкие, податливые сущности. Во вселенских масштабах пространство по своей природе динамично: со временем оно расширяется или сокращается, увлекая за собой материю. В 1920-х гг. астрономы подтвердили, что наша Вселенная в настоящее время расширяется: галактики удаляются друг от друга. Из этого следует, что время не может бесконечно простираться в прошлое - еще в 1960-х гг. это доказали Стивен Хокинг (Steven Hawking) и Роджер Пенроуз (Roger Penrose). Если мы будем просматривать космическую историю в обратном порядке, то увидим, как все галактики будто проваливаются в черную дыру и сжимаются в единственную бесконечно малую точку - сингулярность. При этом плотность материи, ее температура и кривизна пространства-времени обращаются в бесконечность. На сингулярности наша космическая родословная обрывается и дальше в прошлое простираться не может.

    Странное совпадение

    Неизбежная сингулярность представляет собой серьезную космологическую проблему. В частности, она плохо согласуется с высокой степенью однородности и изотропности, которой характеризуется Вселенная в глобальном масштабе. Раз уж космос в широком смысл е слова стал всюду одинаковым, значит, между отдаленными областями пространства существовала какая-то связь, координировавшая его свойства. Однако это противоречит старой космологической парадигме.

    Давайте рассмотрим, что произошло за 13,7 млрд. лет, прошедших с момента возникновения реликтового излучения. Из-за расширения Вселенной расстояние между галактиками выросло в 10 тыс. раз, тогда как радиус наблюдаемой Вселенной увеличился значительно больше - приблизительно в 1 млн раз (потому что скорость света превышает скорость расширения). Сегодня мы наблюдаем те области Вселенной, которые не могли бы видеть 13,7 млрд. лет назад. Впервые в космической истории свет от наиболее отдаленных галактик достиг Млечного пути.

    Тем не менее свойства Млечного пути в основном такие же, как у отдаленных галактик. Если на вечеринке вы встретите двух одинаково одетых людей, то это можно объяснить простым совпадением. Однако если в похожих нарядах будут десять человек - значит, они заранее договорились о форме одежды. Сегодня мы наблюдаем десятки тысяч независимых участков небесной сферы со статистически идентичными характеристиками реликтового фона. Возможно, такие области пространства уже при рождении были одинаковыми, т.е. однородность Вселенной - простое совпадение. Однако физики придумали два более правдоподобных объяснения: на начальной стадии развития Вселенная была либо намного меньше, либо намного старше, чем считалось раньше.

    Чаще всего предпочтение отдается первой альтернативе. Считается, что молодая Вселенная прошла период инфляции, т.е. ускоряющегося расширения. До него галактики (точнее, их прародители) были очень плотно упакованы и поэтому стали похожи друг на друга. Во время инфляции они потеряли контакт, ибо свет не успевал за неистовым расширением. Когда инфляция закончилась, расширение начало замедляться и галактики снова оказались в поле зрения друг друга.

    Виновницей стремительного инфляционного всплеска физики считают потенциал ьную энерги ю, накопленную спустя 10-35 с после Большого взрыва в особом квантовом поле - инфлатоне. Потенциальная энерги я, в отличие от массы покоя и кинетической энерги и, приводит к гравитационному отталкиванию. Тяготение обычной материи замедляло бы расширение, а инфлатон, напротив, ускорял его. Появившаяся в 1981 г. теор ия инфляции точно объясняет результаты целого ряда наблюдений (см. специальный репортаж "Четыре ключа к космологии", "В мире науки", №5, 2004 г.). Однако до сих пор не ясно, что представлял собой инфлатон и откуда у него взялось столько потенциал ьной энерги и.

    Вторая альтернатива подразумевает отказ от сингулярности. Если время началось не в момент Большого взрыва, а Вселенная возникла задолго до начала нынешнего космического расширения, то у материи было достаточно времени, чтобы плавно самоорганизоваться. Поэтому ученые решили пересмотреть рассуждения, приводящие к мысли о сингулярности.

    ДВЕ ВЕРСИИ НАЧАЛА
    В нашей расширяющейся Вселенной галактики разбегаются, словно рассеивающаяся толпа. Они удаляются друг от друга со скоростью, пропорциональной расстоянию между ними: галактики, разделенные 500 млн. световых лет, разбегаются вдвое быстрее, чем галактики, разнесенные на 250 млн. световых лет. Таким образом, все наблюдаемые нами галактики должны были в момент Большого взрыва одновременно стартовать из одного и того же места. Это справедливо даже в том случае, если космическое расширение проходит периоды ускорения и замедления. На диаграммах пространства и времени (см. ниже) галактики перемещаются по извилистым путям в наблюдаемую часть пространства и из нее (желтый клин). Однако пока точно неизвестно, что же происходило в тот момент, когда галактики (или их предшественники) начали разлетаться.

    Весьма сомнительным представляется предположение о том, что теор ия относительности справедлива всегда. Ведь в ней не учитываются квантовые эффекты, которые должны были доминировать вблизи сингулярности. Чтобы окончательно во всем разобраться, нужно включить общую теор ию относительности в квантовую теор ию гравитации. Над этой задачей теор етики бились со времен Эйнштейна, но лишь в середине 1980-х гг. дело сдвинулось с мертвой точки.

    Эволюция революции

    Сегодня рассматриваются два подхода. В теор ии петлевой квантовой гравитации теор ия относительности сохраняется по существу нетронутой, изменяется только процедура ее применения в квантовой механике (см. статью Ли Смолина "Атомы пространства и времени", "В мире науки", №4, 2004 г.). В последние годы сторонники петлевой квантовой гравитации добились больших успехов и достигли глубокого понимания, однако их подход недостаточно кардинален для решения фундаментальных проблем квантования тяготения. С похожей проблемой столкнулись специалисты по теор ии элементарных частиц. В 1934 г. Энрико Ферми (Enrico Fermi) предложил эффективную теор ию слабого ядерного взаимодействия, но попытки построить ее квантовый вариант поначалу потерпели фиаско. Требовалась не новая методика, а концептуальные изменения, которые были воплощены в теор ии электрослабого взаимодействия, предложенной Шелдоном Глэшоу (Sheldon Glashow), Стивеном Вейнбергом (Steven Weinberg) и Абдусом Саламом (Abdus Salam) в конце 1960-х гг.

    Более обещающим мне представляется второй подход - теор ия струн, действительно революционная модификация теор ии Эйнштейна. Она выросла из модели, предложенной мною в 1968 г. для описания ядерных частиц (протонов и нейтронов) и их взаимодействий. К сожалению, модель оказалась не совсем удачной, и через несколько лет от нее отказались, предпочтя квантовую хромодинамику, согласно которой протоны и нейтроны состоят из кварков. Последние ведут себя так, словно связаны между собой упругими струнами. Изначально теор ия струн была посвящена описанию струнных свойств ядерного мира. Однако вскоре ее стали рассматривать как возможный вариант объединения общей теор ии относительности и квантовой механики.

    Основная идея состоит в том, что элементарные частицы - не точечные, а бесконечно тонкие одномерные объекты, называемые струнами. Обширное семейство разнообразных элементарных частиц отражено множеством возможных форм колебаний струны. Как же столь бесхитростная теор ия описывает сложный мир частиц и их взаимодействий? Секрет в так называемой маги и квантовых струн. Как только правила квантовой механики применяются к вибрирующей струне, вдоль которой колебания распространяются со скоростью света, у нее появляются новые свойства, тесно связанные с физикой элементарных частиц и космологией.

    Во-первых, квантовые струны имеют конечный размер. Обычную (неквантовую) скрипичную струну можно было бы разрезать пополам, затем одну из половинок снова порвать на две части и так далее, пока не получилась бы точечная частица с нулевой массой. Однако принцип неопределенности Гейзенберга не позволяет нам разделить струну на части длиной меньше, чем приблизительно 10-34 м. Мельчайший квант длины обозначается ls и представляет собой природную константу, которая в теор ии струн стоит в одном ряду со скоростью света c и постоянной Планка h.

    Во-вторых, даже безмассовые квантовые струны могут иметь угловой момент. В классической физике тело с нулевой массой не может обладать угловым моментом, поскольку он определяется как произведение скорости, массы и расстояния до оси. Но квантовые флуктуации изменяют ситуацию. Угловой момент крошечной струны может достигать 2h, даже если ее масса равняется нулю, что в точности соответствует свойствам переносчиков всех известных фундаментальных сил, таких как фотон и гравитон. Исторически именно эта особенность углового момента привлекла внимание к теор ии струн, как к кандидату на звание теор ии квантовой гравитации.

    В-третьих, квантовые струны требуют существования дополнительных пространственных измерений. Классическая скрипичная струна будет колебаться независимо от того, каковы свойства пространства и времени. Квантовая струна более привередлива: уравнения, описывающие ее колебания, остаются непротиворечивыми только в том случае, если пространство-время сильно искривлено (что противоречит наблюдениям) или содержит шесть дополнительных измерений.

    В-четвертых, физические постоянные, которые определяют свойства природы и входят в уравнения, отражающие закон Кулона и закон всемирного тяготения, перестают быть независимыми, фиксированными константами. В теор ии струн их значения динамически задаются полями, похожими на электромагнитное. Возможно, напряженность полей была неодинакова на протяжении различных космологических эпох или в отдаленных областях пространства. Теория струн получит серьезное экспериментальное подтверждение, если ученым удастся зарегистрировать хотя бы незначительное изменение физических констант.

    Центральное место в теор ии струн занимает одно из таких полей - дилатон. Оно определяет общую силу всех взаимодействий. Величину дилатона можно истолковать как размер дополнительного пространственного измерения - 11-го по счету.

    ТЕОРИЯ СТРУН
    Теория струн - самая многообещающая (хотя и не единственная) теор ия, пытающаяся описать, что происходило в момент Большого взрыва. Струны представляют собой материальные объекты, очень похожие на струны скрипки. Когда скрипач перемещает пальцы по деке инструмента, он уменьшает длину струн и вызывает повышение частоты колебаний и, следовательно, их энерги и. Если укоротить струну до субсубатомных размеров, начнут действовать квантовые эффекты, препятствующие дальнейшему уменьшению длины.

    Субатомная струна может не только перемещаться целиком или колебаться, но и завиваться, как пружина. Предположим, что пространство имеет цилиндрическую форму. Если длина окружности больше, чем минимальная допустимая длина струны, увеличение скорости перемещения требует малого приращения энерги и, а каждый виток - большого. Однако если окружность короче минимальной длины, на дополнительный виток затрачивается меньше энерги и, чем на приращение скорости. Следовательно, полная эффективная энерги я остается неизменной. Струна не может быть короче кванта длины, поэтому вещество в принципе не может быть бесконечно плотным.

    Связывание свободных концов

    Наконец квантовые струны помогли физикам открыть новый вид природной симметрии - дуализм, который изменяет наше интуитивное представление о том, что происходит, когда объекты становятся чрезвычайно малыми. Я уже ссылался на одну из форм дуализма: обычно длинная струна тяжелее, чем короткая, но если мы попытаемся сделать ее короче фундаментальной длины ls, то она снова начнет тяжелеть.

    Поскольку струны могут двигаться более сложными способами, чем точечные частицы, существует и другая форма симметрии - T-дуализм, который выражается в том, что маленькие и большие дополнительные измерения эквивалентны. Рассмотрим замкнутую струну (петлю), расположенную в цилиндрическом пространстве, круговое сечение которого представляет собой одно конечное дополнительное измерение. Струна может не только колебаться, но и вращаться вокруг цилиндра или наматываться на него (см. рис. выше).

    Энергетическая стоимость обоих состояний струны зависит от размеров дополнительного измерения. Энергия наматывания прямо пропорциональна его радиусу: чем больше цилиндр, тем сильнее растягивается струна и тем больше энерги и она запасает. С другой стороны, энерги я, связанная с вращением, обратно пропорциональна радиусу: цилиндрам большего радиуса соответствуют более длинные волны, а значит, более низкие частоты и меньшие значения энерги и. Если большой цилиндр заменить малым, два состояния движения могут поменяться ролями: энерги я, связанная с вращением, может быть обеспечена наматыванием и наоборот. Внешний наблюдатель замечает только величину энерги и, а не ее происхождение, поэтому для него большой и малый радиусы физически эквивалентны.

    Хотя T-дуализм обычно описывается на примере цилиндрических пространств, в которых одно из измерений (окружность) конечно, один из его вариантов применяется к обычным трем измерениям, которые, похоже, простираются безгранично. О расширении бесконечного пространства нужно говорить с осторожностью. Его полный размер не может измениться и остается бесконечным. Но все же оно способно расширяться в том смысл е, что расположенные в нем тела (например, галактики) могут удаляться друг от друга. В данном случае значение имеет не размер пространства в целом, а его масштабный коэффициент, в соответствии с которым происходит изменение расстояний между галактиками и их скоплениями, заметное по красному смещению. Согласно принципу T-дуализма, вселенные и с малыми, и с большими масштабными коэффициентами эквивалентны. В уравнениях Эйнштейна такой симметрии нет; она является следствием унификации, заключенной в теор ии струн, причем центральную роль здесь играет дилатон.

    Когда-то бытовало мнение, что T-дуализм присущ только замкнутым струнам, поскольку открытые струны не могут наматываться, так как их концы свободны. В 1995 г. Йозеф Полчински (Joseph Polchinski) из Калифорнийского университета в Санта-Барбаре показал, что принцип T-дуализма применим к открытым струнам в том случае, когда переход от больших радиусов к малым сопровождается изменением условий на концах струны. До этого физики считали, что на концы струн не действуют никакие силы и они абсолютно свободны. Вместе с тем T-дуализм обеспечивается так называемыми граничными условиями Дирихле, при которых концы струн оказываются зафиксированными.

    Условия на границе струны могут быть смешанными. Например, электроны могут оказаться струнами, чьи концы закреплены в семи пространственных измерениях, но свободно движутся в пределах трех остальных, образующих подпространство, известное как мембрана Дирихле, или D-мембрана. В 1996 г. Петр Хорава (Petr Horava) из Калифорнийского университета и Эдвард Уиттен (Edward Witten) из Института специальных исследований в Принстоне, штат Нью-Джерси, предположили, что наша Вселенная расположена как раз на такой мембране (см. статьи "Информация в голографической Вселенной", "В мире науки", №11, 2003 г. и "Кто нарушил закон тяготения?", "В мире науки", №5, 2004 г). Наша неспособность воспринимать все 10-мерное великолепие пространства объясняется ограниченной подвижностью электронов и других частиц.

    ПРЕДВЗРЫВНОЙ СЦЕНАРИЙ


    Первой попыткой применить теор ию струн к космологии стала разработка так называемого предвзрывного сценария, в соответствии с которым Большой взрыв был не моментом возникновения Вселенной, а просто переходной стадией. До него расширение ускорялось, а после него - замедлялось (по крайней мере, в начале). Путь галактики в пространстве-времени (справа) имеет форму бокала.

    Вселенная существовала всегда. В отдаленном прошлом она была почти пуста. Такие силы, как гравитация, были слабы. Силы постепенно росли, и материя начала сгущаться. В некоторых областях плотность возросла настолько, что начала формироваться черная дыра.

    Черная дыра разрасталась с ускорением. Материя внутри нее оказалась изолированной от вещества снаружи. Плотность вещества, устремлявшегося к центру д234ыры, возрастала, пока не достигла предела, определяемого теор ией струн.

    Когда плотность материи достигла максимально допустимой величины, квантовые эффекты привели к Большому взрыву. Тем временем снаружи возникали другие черные дыры, которые затем тоже становились вселенными.

    Приручение бесконечности

    Все волшебные свойства квантовых струн указывают на то, что они ненавидят бесконечность. Струны не могут стянуться в бесконечно малую точку, и поэтому им несвойственны парадоксы, связанные с коллапсом. Отличие их размера от нуля и новые виды симметрии задают верхние границы для возрастающих физических величин и нижние - для убывающих. Специалисты по теор ии струн полагают, что, если проигрывать историю Вселенной назад, то кривизна пространства-времени будет расти. Однако она не станет бесконечной, как в традиционной сингулярности Большого взрыва: в некоторый момент ее значение достигнет максимума и снова начнет уменьшаться. До появления теор ии струн физики отчаянно пытались придумать механизм, который мог бы так чисто устранить сингулярность.



    Притягиваясь друг к другу, две почти пустые мембраны сжимаются в направлении, перпендикулярном направлению движения. Мембраны соударяются, и их кинетическая энерги я преобразуется в материю и излучение. Это соударение и есть Большой взрыв.

    Условия вблизи нулевого момента времени, соответствующего началу Большого взрыва, настолько экстремальны, что никто пока не знает, как решать соответствующие уравнения. Тем не менее специалисты по теор ии струн берут на себя смелость высказывать догадки о том, что представляла собой Вселенная до Большого взрыва. Сейчас в ходу две модели.

    Первую из них, известную как пред-взрывной сценарий, мы начали разрабатывать в 1991 г. В ней принцип Т-дуализма объединяется с более известной симметрией обращения времени, в силу которой физические уравнения работают одинаково хорошо независимо от направления времени. Такая комбинация позволяет говорить о новых возможных вариантах космологии, в которых Вселенная, скажем, за 5 с до Большого взрыва расширялась с такой же скоростью, как и через 5 с после него. Однако изменение скорости расширения в эти моменты происходило в противоположных направлениях: если после Большого взрыва расширение замедлялось, то перед ним - ускорялось. Короче говоря, Большой взрыв, возможно, был не моментом возникновения Вселенной, а просто внезапным переходом от ускорения к замедлению.

    Прелесть такой картины состоит в том, что она автоматически подразумевает более глубокое понимание теор ии инфляции: Вселенная должна была пройти период ускорения, чтобы стать настолько однородной и изотропной. В стандартной теор ии ускорение после Большого взрыва происходит под действием введенного специально для этой цели инфлатона. В пред-взрывном сценарии оно происходит перед взрывом как естественное следствие новых видов симметрии в теор ии струн.

    В соответствии с такой моделью Вселенная перед Большим взрывом была почти идеальным зеркальным изображением самой себя после него (см. рис.выше). Если Вселенная безгранично устремляется в будущее, в котором ее содержимое разжижается до скудной кашицы, то она также бескрайне простирается и в прошлое. Бесконечно давно она была почти пуста: ее заполнял лишь невероятно разреженный, хаотический газ из излучения и вещества. Силы природы, управляемые дилатоном, были настолько слабы, что частицы этого газа практически не взаимодействовали друг с другом.

    Но время шло, силы возрастали и стягивали материю воедино. Случайным образом материя скапливалась в некоторых участках пространства. Там ее плотность в конечном счете стала настолько высокой, что начали образовываться черные дыры. Вещество внутри таких областей оказывалось отрезанным от окружающего пространства, т.е. Вселенная разбивалась на обособленные части.

    Внутри черной дыры пространство и время меняются ролями: ее центр - не точка пространства, а момент времени. Падающая в черную дыру материя, приближаясь к центру, становится все более плотной. Но, достигнув максимальных значений, допускаемых теор ией струн, плотность, температура и кривизна пространства-времени внезапно начинают уменьшаться. Момент такого реверсирования и есть то, что мы называем Большим взрывом. Внутренность одной из описанных черных дыр и стала нашей Вселенной.

    Неудивительно, что столь необычный сценарий вызвал множество споров. Так, Андрей Линде (Andrei Linde) из Стэнфордского университета утверждает, что для того, чтобы такая модель согласовывалась с наблюдениями, Вселенная должна была возникнуть из черной дыры гигантских размеров, значительно больших, чем масштаб длины в теор ии струн. Но ведь наши уравнения не накладывают никаких ограничений на размер черных дыр. Просто случилось так, что Вселенная сформировалась внутри достаточно большой дыры.

    Более серьезное возражение приводят Тибо Дамур (Thibault Damour) из Института высших научных исследований в Бур-сюр-Ив во Франции и Марк Анно (Marc Henneaux) из Брюссельского свободного университета: материя и пространство-время вблизи момента Большого взрыва должны были вести себя хаотически, что наверняка противоречит наблюдаемой регулярности ранней Вселенной. Недавно я предположил, что в таком хаосе мог возникнуть плотный газ из миниатюрных "струнных дыр" - чрезвычайно малых и массивных струн, находящихся на грани превращения в черные дыры. Возможно, в этом содержится ключ к решению проблемы, описанной Дамуром и Анно. Аналогичное предположение было высказано Томасом Бэнксом (Thomas Banks) из Рютгерса и Вилли Фишлером (Willy Fischler) из Техасского университета в Остине. Существуют и другие критические соображения, но нам еще предстоит выяснить, выявляют ли они какие-либо принципиальные недостатки описанной модели.

    НАБЛЮДЕНИЯ
    Не исключено, что изучить эпоху до Большого взрыва нам поможет гравитационное излучение, возможно, сохранившееся с тех далеких времен. Периодические вариации гравитационного поля можно зарегистрировать косвенно по их влиянию на поляризацию реликтового излучения (см. модель) или непосредственно в наземных обсерваториях. Согласно пред-взрывному и экпиротическому сценариям гравитационных волн, высокой частоты должно быть больше, а низкочастотных - меньше, чем в обычных инфляционных моделях (см. внизу). В недалеком будущем результаты наблюдений, которые планируется провести с помощью спутника "Планк" и обсерваторий LIGO и VIRGO, позволят выбрать одну из гипотез .

    Соударение мембран

    Другая популярная модель, подразумевающая существование Вселенной до Большого взрыва, - экпиротический сценарий (от греч. ekpyrotic - "пришедший из огня"), разработанный три года назад Джастином Каури (Justin Khoury) из Колумбийского университета, Полом Штейнхардтом (Paul Steinhardt) из Принстонского университета, Бартом Оврутом (Burt A. Ovrut) из Пенсильванского университета, Натаном Зейбергом (Nathan Seiberg) из Института углубленных исследований и Нейлом Тьюроком (Neil Turok) из Кембриджского университета. Он основан на предположении, что наша Вселенная - одна из многих D-мембран, дрейфующих в многомерном пространстве. Мембраны притягиваются друг к другу, а когда они сталкиваются, в них может произойти то, что мы называем Большим взрывом (см. рис. выше).

    Не исключено, что коллизии происходят циклически. Две мембраны могут сталкиваться, отскакивать друг от друга, расходиться, притягиваться одна к другой, снова соударяться и так далее. Расходясь после удара, они немного растягиваются, а при очередном сближении снова сжимаются. Когда направление движения мембраны сменяется на противоположное, она расширяется с ускорением, поэтому наблюдаемое ускоряющееся расширение Вселенной может указывать на предстоящее столкновение.

    У пред-взрывного и экпиротического сценариев есть общие особенности. Оба они начинаются с большой, холодной, почти пустой Вселенной, и обоим свойственна трудная (и пока нерешенная) проблема перехода от состояния перед Большим взрывом к стадии после него. Математически главное различие между двумя моделями заключается в поведении дилатона. В пред-взрывном сценарии это поле и, соответственно, все силы природы изначально очень слабы и постепенно усиливаются, достигая максимума в момент Большого взрыва. Для экпиротической модели справедливо обратное: столкновение происходит тогда, когда значения сил минимальны.

    Разработчики экпиротической схемы вначале надеялись, что слабость сил облегчит процедуру анализа столкновения, однако им приходится иметь дело с высокой кривизной пространства-времени, поэтому пока нельзя однозначно решить, удастся ли избежать сингулярности. Кроме того, этот сценарий должен протекать при весьма специфичных обстоятельствах. Например, перед самым столкновением мембраны должны быть почти идеально параллельны друг другу, иначе вызванный им Большой взрыв будет недостаточно однородным. В циклической версии эта проблема стоит не так остро: последовательные соударения позволили бы мембранам выровняться.

    Оставив пока в стороне трудности полного математического обоснования обеих моделей, ученые должны разобраться, удастся ли когда-нибудь проверить их экспериментально. На первый взгляд, описанные сценарии очень похожи на упражнения не в физике, а в метафизике: масса интересных идей, которые никогда не удастся подтвердить или опровергнуть результатами наблюдений. Такой взгляд слишком пессимист ичен. Как стадия инфляции, так и довзрывная эпоха должны были оставить после себя артефакты, которые можно заметить и сегодня, например, в небольших вариациях температуры реликтового излучения.

    Во-первых, наблюдения показывают, что температурные отклонения были сформированы акустическими волнами за несколько сотен тысяч лет. Регулярность флуктуаций свидетельствует о когерентности звуковых волн. Космологи уже отвергли целый ряд космологических моделей, не способных объяснить волновой синхронизм. Сценарии с инфляцией, эпохой до Большого взрыва и столкновением мембран успешно проходят это первое испытание. В них синфазные волны создаются квантовыми процессами, усилившимися в ходе ускоряющегося космического расширения.

    Во-вторых, каждая модель предсказывает разное распределение температурных флуктуаций в зависимости от их углового размера. Оказалось, что большие и малые флуктуации имеют одинаковую амплитуду. (Отступления от этого правила наблюдаются только при очень малых масштабах, в которых изначальные отклонения изменились под действием более поздних процессов.) В инфляционных моделях это распределение воспроизводится с высокой точностью. Во время инфляции кривизна пространства изменялась относительно медленно, так что флуктуации различных размеров возникали в почти одинаковых условиях. Согласно обеим струнным моделям, кривизна менялась быстро. В результате амплитуда мелкомасштабных флуктуаций увеличивалась, однако другие процессы усиливали крупномасштабные отклонения температуры, выравнивая общее распределение. В экпиротическом сценарии этому способствует дополнительное пространственное измерение, разделяющее сталкивающиеся мембраны. В пред-взрывной схеме за выравнивание распределения флуктуации отвечает аксион - квантовое поле, связанное с дилатоном. Короче говоря, все три модели согласуются с результатами наблюдений.

    В-третьих, в ранней Вселенной температурные вариации могли возникать из-за флуктуаций плотности вещества и из-за слабых колебаний, вызванных гравитационными волнами. При инфляции обе причины имеют одинаковое значение, а в сценариях со струнами основную роль играют вариации плотности. Гравитационные волны должны были оставить свой отпечаток в поляризации реликтового излучения. Возможно, в будущем его удастся обнаружить с помощью космических обсерваторий, таких как спутник "Планк" Европейского космического агентства.

    Четвертая проверка связана с распределением флуктуаций. В инфляционном и экпиротическом сценариях оно описывается законом Гаусса. Вместе с тем предвзрывная модель допускает значительные отклонения от нормального распределения.

    Анализ реликтового излучения - не единственный способ проверить рассмотренные теор ии. Сценарий с эпохой до Большого взрыва подразумевает возникновение случайного фона гравитационных волн в некотором диапазоне частот, который в будущем можно будет обнаружить с помощью гравитационных обсерваторий. Кроме того, поскольку в струнных моделях изменяется дилатон, тесно связанный с электромагнитным полем, им обеим должны быть свойственны крупномасштабные флуктуации магнитного поля. Не исключено, что их остатки можно обнаружить в галактических и межгалактических магнитных полях.

    Так когда же началось время? Наука пока не дает окончательного ответа. И все же согласно двум потенциал ьно проверяемым теор иям Вселенная - а значит, и время - существовала задолго до Большого взрыва. Если один из этих сценариев соответствует истине, то космос существовал всегда. Возможно, однажды он снова коллапсирует, но не исчезнет никогда.

    ОБ АВТОРЕ:
    Габриель Венециано
    (Gabriele Veneziano), физик-теор етик из CERN, создал теор ию струн в конце 1960-х гг. Однако вскоре она была признана ошибочной, так как не объясняла всех свойств атомного ядра. Поэтому Венециано занялся квантовой хромодинамикой, в которую внес крупный вклад. Когда в 1980-х гг. о теор ии струн заговорили как о теор ии квантовой гравитации, Венециано впервые применил ее к черным дырам и космологии.

    ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

  • The Elegant Universe. Brian Greene. W.W. Norton, 1999.
  • Superstring Cosmology. James E. Lidsey, David Wands and Edmund J. Copeland in Physics Reports, Vol. 337, Nos. 4-5, pages 343-492; October 2000. hep-th/9909061
  • From Big Crunch to Big Bang. Justin Khoury, Burt A. Ovrut, Nathan Seiberg, Paul J. Steinhardt and Neil Turok in Physical Review D, Vol. 65, No. 8, Paper no. 086007; April 15, 2002. hep-th/0108187
  • A Cyclic Model of the Universe. Paul J. Steinhardt and Neil Turok in Science, Vol. 296, No. 5572, pages 1436-1439; May 24, 2002. hep-th/0111030
  • The Pre-Big Bang Scenario in String Cosmology. Maurizio Gasperini and Gabriele Veneziano in Physics Reports, Vol. 373, Nos. 1-2, pages 1-212; January 2003. hep-th/0207130
  • error: