Какое свойство моделируется при имитационном подходе. Имитационное моделирование систем: что это такое и где используется. Принципы и методы построения имитационных моделей

Моделью объекта называется любой другой объект, отдельные свойства которого полностью или частично совпадают со свойствами исходного.

Следует ясно понимать, что исчерпывающе полной модель быть не может. Она всегда ограничена и должна лишь соответствовать целям моделирования, отражая ровно столько свойств исходного объекта и в такой полноте, сколько необходимо для конкретного исследования.

Исходный объект может быть либо реальным , либо воображаемым . C воображаемыми объектами в инженерной практике мы имеем дело на ранних этапах проектирования технических систем. Модели еще не воплощенных в реальные разработки объектов называются предвосхищающими.

Цели моделирования

Модель создается ради исследований, которые на реальном объекте проводить либо невозможно, либо дорого, либо просто неудобно. Можно выделить несколько целей, ради которых создаются модели и ряд основных типов исследований:

  1. Модель как средство осмысления помогает выявить:
  • взаимозависимости переменных;
  • характер их изменения во времени;
  • существующие закономерности.

При составлении модели становится более понятной структура исследуемого объекта, вскрываются важные причинно-следственные связи. В процессе моделирования постепенно происходит разделение свойств исходного объекта на существенные и второстепенные с точки зрения сформулированных требований к модели. Мы пытаемся найти в исходном объекте только те черты, которые имеют непосредственное отношение к интересующей нас стороне его функционирования. В определенном смысле вся научная деятельность сводится к построению и исследованию моделей природных явлений.

  1. Модель как средство прогнозирования позволяет научиться предсказывать поведение и управлять объектом, испытывая различные варианты управления на модели. Экспериментировать с реальным объектом часто, в лучшем случае, бывает неудобно, а иногда и просто опасно или вообще невозможно в силу ряда причин: большой продолжительности эксперимента, риска повредить или уничтожить объект, отсутствия реального объекта в случае, когда он еще только проектируется.
  2. Построенные модели могут использоваться для нахождения оптимальных соотношений параметров , исследования особых (критических) режимов работы.
  3. Модель также может в некоторых случаях заменять исходный объект при обучении , например использоваться в качестве тренажера при подготовке персонала к последующей работе в реальной обстановке, или выступать в качестве исследуемого объекта в виртуальной лаборатории. Модели, реализованные в виде исполняемых модулей, применяются и как имитаторы объектов управления при стендовых испытаниях систем управления, и, на ранних стадиях проектирования, заменяют сами будущие аппаратно реализуемые системы управления.

Имитационное моделирование

В русском языке прилагательное «имитационный» часто используют как синоним прилагательных «сходный», «похожий». Среди словосочетаний «математическая модель», «аналоговая модель», «статистическая модель», пара – «имитационная модель», появившаяся в русском языке, наверное в результате неточности перевода, постепенно приобрела новое, отличное от первоначального значение.

Указывая, что данная модель имитационная, мы обычно подчеркиваем, что, в отличие от других типов абстрактных моделей, в этой модели сохранены и легко узнаваемы такие черты моделируемого объекта, как структура, связи между компонентами, способ передачи информации . С имитационными моделями также обычно связывают и требование иллюстрации их поведения с помощью принятых в данной прикладной области графических образов . Недаром имитационными обычно называют модели предприятий, экологические и социальные модели.

Имитационное моделирование = компьютерное моделирование (синонимы). В настоящее время для этого вида моделирования используется синоним «компьютерное моделирование», подчеркивая тем самым, что решаемые задачи невозможно решить, используя стандартные средства выполнения вычислительных расчетов (калькулятор, таблицы или компьютерные программы, заменяющие эти средства).

Имитационная модель – специальный программный комплекс, который позволяет имитировать деятельность какого-либо сложного объекта, в котором:

  • отражена структура объекта (и представлена графическим образом) со связями;
  • выполняются параллельные процессы.

Для описания поведения могут использоваться как глобальные законы, так и локальные, полученные на основе натурных экспериментов

Таким образом, имитационное моделирование предполагает использование компьютерных технологий для имитации различных процессов или операций (т. е. их моделирования), выполняемых реальными устройствами. Устройство или процесс обычно именуется системой . Для научного исследования системы мы прибегаем к определенным допущениям, касающимся ее функционирования. Эти допущения, как правило, имеющие вид математических или логических отношений, составляют модель, с помощью которой можно получить представление о поведении соответствующей системы.

Если отношения, которые образуют модель, достаточно просты для получения точной информации по интересующим нас вопросам, то можно использовать математические методы. Такого рода решение называется аналитическим . Однако большинство существующих систем являются очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие модели следует изучать с помощью моделирования. При моделировании компьютер используется для численной оценки модели, а с помощью полученных данных рассчитываются ее реальные характеристики.

С точки зрения специалиста (информатика-экономиста, математика-программиста или экономиста-математика), имитационное моделирование контролируемого процесса или управляемого объекта – это высокоуровневая информационная технология, которая обеспечивает два вида действий, выполняемых с помощью компьютера:

  • работы по созданию или модификации имитационной модели;
  • эксплуатацию имитационной модели и интерпретацию результатов.

Имитационное (компьютерное) моделирование экономических процессов обычно применяется в двух случаях:

  • для управления сложным бизнес-процессом, когда имитационная модель управляемого экономического объекта используется в качестве инструментального средства в контуре адаптивной системы управления, создаваемой на основе информационных (компьютерных) технологий;
  • при проведении экспериментов с дискретно-непрерывными моделями сложных экономических объектов для получения и отслеживания их динамики в экстренных ситуациях, связанных с рисками, натурное моделирование которых нежелательно или невозможно.

Типовые задачи имитационного моделирования

Имитационное моделирование может применяться в самых различных сферах деятельности. Ниже приведен список задач, при решении которых моделирование особенно эффективно:

  • проектирование и анализ производственных систем;
  • определение требований к оборудованию и протоколам сетей связи;
  • определение требований к оборудованию и программному обеспечению различных компьютерных систем;
  • проектирование и анализ работы транспортных систем, например аэропортов, автомагистралей, портов и метрополитена;
  • оценка проектов создания различных организаций массового обслуживания, например центров обработки заказов, заведений быстрого питания, больниц, отделений связи;
  • модернизация различных процессов в деловой сфере;
  • определение политики в системах управления запасами;
  • анализ финансовых и экономических систем;
  • оценка различных систем вооружений и требований к их материально-техническому обеспечению.

Классификация моделей

В качестве оснований классификации выбраны:

  • функциональный признак, характеризующий назначение, цель построения модели;
  • способ представления модели;
  • временной фактор, отражающий динамику модели.

Функция

Класс моделей

Пример

Описания

Объяснения

Демонстрационные модели

Учебные плакаты

Предсказания

Научно-технические

Экономические

Математические модели процессов

Модели разрабатываемых технических устройств

Измерения

Обработки эмпирических данных

Модель корабля в бассейне

Модель самолета в аэродинамической трубе

Интерпретаторская

Военные, экономические, спортивные, деловые игры

Критериальная

Образцовые (эталонные)

Модель обуви

Модель одежды

В соответствии с ней модели делятся на две большие группы: материальные и абстрактные (нематериальные) . И материальная, и абстрактная модели содержат информацию об исходном объекте. Только для материальной модели эта информация имеет материальное воплощение, а в нематериальной модели та же информация представляется в абстрактной форме (мысль, формула, чертеж, схема).

Материальная и абстрактная модели могут отражать один и тот же прототип и взаимно дополнять друг друга.

Модели можно условно разделить на две группы: материальные и идеальные , и, соответственно, различать предметное и абстрактное моделирование. Основными разновидностями предметного моделирования являются физическое и аналоговое моделирование.

Физическим принято называть такое моделирование (макетирование), при котором реальному объекту ставится в соответствие его увеличенная или уменьшенная копия. Эта копия создается на основе теории подобия, что и позволяет утверждать, что в модели сохранились требуемые свойства.

В физических моделях помимо геометрических пропорций может быть сохранен, например, материал или цветовая гамма исходного объекта, а также другие свойства, необходимые для конкретного исследования.

Аналоговое моделирование основано на замене исходного объекта объектом другой физической природы, обладающим аналогичным поведением.

И физическое, и аналоговое моделирование в качестве основного способа исследования предполагает проведение натурного эксперимента с моделью, но этот эксперимент оказывается в каком-то смысле более привлекательным, чем эксперимент с исходным объектом.

Идеальные модели – это абстрактные образы реальных или воображаемых объектов. Различают два типа идеального моделирования: интуитивное и знаковое.

Об интуитивном моделировании говорят, когда не могут даже описать используемую модель, хотя она и существует, но берутся с ее помощью предсказывать или объяснять окружающий нас мир. Мы знаем, что живые существа могут объяснять и предсказывать явления без видимого присутствия физической или абстрактной модели. В этом смысле, например, жизненный опыт каждого человека может считаться его интуитивной моделью окружающего его мира. Собираясь перейти улицу, вы смотрите направо, налево, и интуитивно решаете (обычно правильно), можно ли идти. Как справляется мозг с этой задачей, мы просто пока не знаем.

Знаковым называется моделирование, использующее в качестве моделей знаки или символы: схемы, графики, чертежи, тексты на различных языках, включая формальные, математические формулы и теории. Обязательным участником знакового моделирования является интерпретатор знаковой модели, чаще всего человек, но с интерпретацией может справляться и компьютер. Чертежи, тексты, формулы сами по себе не имеют никакого смысла без того, кто понимает их и использует в своей повседневной деятельности.

Важнейшим видом знакового моделирования является математическое моделирование . Абстрагируясь от физической (экономической) природы объектов, математика изучает идеальные объекты. Например, с помощью теории дифференциальных уравнений можно изучать уже упомянутые электрические и механические колебания в наиболее общем виде, а затем полученные знания применять для исследования объектов конкретной физической природы.

Виды математических моделей:

Компьютерная модель – это программная реализация математической модели, дополненная различными служебными программами (например, рисующими и изменяющими графические образы во времени). Компьютерная модель имеет две составляющие – программную и аппаратную. Программная составляющая так же является абстрактной знаковой моделью. Это лишь другая форма абстрактной модели, которая, однако, может интерпретироваться уже не только математиками и программистами, но и техническим устройством – процессором компьютера.

Компьютерная модель проявляет свойства физической модели, когда она, а точнее ее абстрактные составляющие – программы, интерпретируются физическим устройством, компьютером. Совокупность компьютера и моделирующей программы называется «электронным эквивалентом изучаемого объекта ». Компьютерная модель как физическое устройство может входить в состав испытательных стендов, тренажеров и виртуальных лабораторий.

Статическая модель описывает неизменяемые параметры объекта или единовременный срез информации по данному объекту. Динамическая модель описывает и исследует изменяемые во времени параметры.

Простейшая динамическая модель может быть описана в виде системы линейных дифференциальных уравнений:

все моделируемые параметры представляют функции от времени.

Детерминированные модели

Нет места случайности.

Все события в системе наступают в строгой последовательности, точно в соответствии с математическими формулами, описывающими законы поведения. А потому результат точно определен. И будет получаться один и тот же результат, сколько бы мы ни проводили экспериментов.

Вероятностные модели

События в системе наступают не в точной последовательности, а случайным образом. Но вероятность наступления того или иного события известна. Результат заранее неизвестен. При проведении эксперимента могут получаться разные результаты. В этих моделях накапливается статистика при проведении множества экспериментов. На основе этой статистики делаются выводы о функционировании системы.

Стохастические модели

При решении многих задач финансового анализа используются модели, содержащие случайные величины, поведение которых не поддается управлению со стороны лиц, принимающих решения. Такие модели называют стохастическими. Применение имитации позволяет сделать выводы о возможных результатах, основанные на вероятностных распределениях случайных факторов (величин). Стохастическую имитацию часто называют методом Монте-Карло .

Этапы компьютерного моделирования
(вычислительного эксперимента)

Его можно представить как последовательность следующих основных шагов:

1. ПОСТАНОВКА ЗАДАЧИ.

  • Описание задачи.
  • Цель моделирования.
  • Формализация задачи:
    • структурный анализ системы и процессов, протекающих в системе;
    • построение структурной и функциональной модели системы (графическое);
    • выделение существенных для данного исследования свойств исходного объекта

2. РАЗРАБОТКА МОДЕЛИ.

  • Построение математической модели.
  • Выбор программного средства моделирования.
  • Проектирование и отладка компьютерной модели (технологическая реализация модели в среде)

3. КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ.

  • Оценка адекватности построенной компьютерной модели (удовлетворение модели целям моделирования).
  • Составление плана экспериментов.
  • Проведение экспериментов (исследование модели).
  • Анализ результатов эксперимента.

4. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ.

  • Обобщение результатов экспериментов и вывод о дальнейшем использовании модели.

По характеру постановки все задачи можно разделить на две основные группы.

К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него . Такую постановку задачи принято называть «что будет, если…?» Например, что будет, если повысить оплату за коммунальные услуги в два раза?

Некоторые задачи формулируются несколько шире. Что будет, если изменять характеристики объекта в заданном диапазоне с некоторым шагом ? Такое исследование помогает проследить зависимость параметров объекта от исходных данных. Очень часто требуется проследить развитие процесса во времени. Такая расширенная постановка задачи называется анализ чувствительности .

Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется «как сделать, чтобы…?»

Как сделать, чтобы «и волки были сыты, и овцы целы».

Наибольшее количество задач моделирования, как правило, является комплексным. В таких задачах сначала строится модель для одного набора исходных данных. Иначе говоря, сначала решается задача «что будет, если…?» Затем проводится исследование объекта при изменении параметров в некотором диапазоне. И, наконец, по результатам исследования производится подбор параметров с тем, чтобы модель удовлетворяла некоторым проектируемым свойствам.

Из приведенного описания следует, что моделирование – процесс циклический, в котором одни и те же операции повторяются многократно.

Эта цикличность обусловлена двумя обстоятельствами: технологическими, связанными с «досадными» ошибками, допущенными на каждом из рассмотренных этапов моделирования, и «идеологическими», связанными с уточнением модели, и даже с отказом от нее, и переходом к другой модели. Еще один дополнительный «внешний» цикл может появиться, если мы захотим расширить область применимости модели, и изменим исходные данные, которые она должна правильно учитывать, или допущения, при которых она должна быть справедливой.

Подведение итогов моделирования может привести к выводу, что запланированных экспериментов недостаточно для завершения работ, а возможно и к необходимости вновь уточнить математическую модель.

Планирование компьютерногоэксперимента

В терминологии планирования экспериментов входные переменные и структурные допущения, составляющие модель, называются факторами, а выходные показатели работы – откликами. Решение о том, какие параметры и структурные допущения считать фиксированными показателями, а какие экспериментальными факторами, зависит скорее от цели исследования, а не от внутреннего вида модели.

Подробнее о планировании компьютерного эксперимента прочитать самостоятельно ( с. 707–724; с. 240–246).

Практические приемы планирования и проведения компьютерного эксперимента рассмотрены на практических занятиях.

Границы возможностей классических математических методов в экономике

Способы исследования системы

Эксперимент с реальной системой или с моделью системы? При наличии возможности физически изменить систему (если это рентабельно) и запустить ее в действие в новых условиях лучше всего поступить именно так, поскольку в этом случае вопрос об адекватности полученного результата исчезает сам собой. Однако часто такой подход неосуществим либо из-за слишком больших затрат на его осуществление, либо в силу разрушительного воздействия на саму систему. Например, в банке ищут способы снижения расходов, и с этой целью предлагается уменьшить число кассиров. Если опробовать в действии новую систему – с меньшим числом кассиров, это может привести к длительным задержкам в обслуживании посетителей и их отказу от услуг банка. Более того, система может и не существовать на самом деле, но мы хотим изучить различные ее конфигурации, чтобы выбрать наиболее эффективный способ выполнения. Примерами таких систем могут служить сети связи или стратегические системы ядерных вооружений. Поэтому необходимо создать модель, представляющую систему, и исследовать ее как заменитель реальной системы. При использовании модели всегда возникает вопрос – действительно ли она в такой степени точно отражает саму систему, чтобы можно было принять решение, основываясь на результатах исследования.

Физическая модель или математическая модель? При слове «модель» большинство из нас представляет себе кабины, установленные вне самолетов на тренировочных площадках и применяемые для обучения пилотов, либо миниатюрные супертанкеры, движущиеся в бассейне. Это всё примеры физических моделей (именуемых также иконическими или образными). Они редко используются при исследовании операций или анализе систем. Но в некоторых случаях создание физических моделей может оказаться весьма эффективным при исследовании технических систем или систем управления. Примерами могут служить масштабные настольные модели погрузочно-разгрузочных систем и, по крайней мере, один случай создания полномасштабной физической модели заведения быстрого питания в большом магазине, в реализации которой были задействованы вполне реальные посетители. Однако преобладающее большинство создаваемых моделей являются математическими. Они представляют систему посредством логических и количественных отношений, которые затем подвергаются обработке и изменениям, чтобы определить, как система реагирует на изменения, точнее – как бы она реагировала, если бы существовала на самом деле. Наверное, самым простым примером математической модели является известное соотношение S=V/t , где S – расстояние; V – скорость перемещения; t – время перемещения. Иногда такая модель может быть и адекватна (например, в случае с космическим зондом, направленным к другой планете, по достижении им скорости полета), но в других ситуациях она может не соответствовать действительности (например, транспортное сообщение в часы пик на городской перегруженной автостраде).

Аналитическое решение или имитационное моделирование? Чтобы ответить на вопросы о системе, которую представляет математическая модель, следует установить, как эту модель можно построить. Когда модель достаточно проста, можно вычислить ее соотношения и параметры и получить точное аналитическое решение. Однако некоторые аналитические решения могут быть чрезвычайно сложными и требовать при этом огромных компьютерных ресурсов. Обращение большой неразреженной матрицы является знакомым многим примером ситуации, когда существует в принципе известная аналитическая формула, но получить в таком случае численный результат не так просто. Если в случае с математической моделью возможно аналитическое решение и его вычисление представляется эффективным, лучше исследовать модель именно таким образом, не прибегая к имитационному моделированию. Однако многие системы чрезвычайно сложны, они практически полностью исключают возможность аналитического решения. В этом случае модель следует изучать с помощью имитационного моделирования, т.е. многократного испытания модели с нужными входными данными, чтобы определить их влияние на выходные критерии оценки работы системы.

Имитационное моделирование воспринимается как «метод последней надежды», и в этом есть толика правды. Однако в большинстве ситуаций мы быстро осознаем необходимость прибегнуть именно к этому средству, поскольку исследуемые системы и модели достаточно сложны и их нужно представить доступным способом.

Допустим, у нас есть математическая модель, которую требуется исследовать с помощью моделирования (далее – имитационная модель). Прежде всего нам необходимо прийти к выводу о средствах ее исследования. В этой связи следует классифицировать имитационные модели по трем аспектам.

Статическая или динамическая? Статическая имитационная модель – это система в определенный момент времени или же система, в которой время просто не играет никакой роли. Примерами статической имитационной модели являются модели, созданные по методу Монте-Карло. Динамическая имитационная модель представляет систему, меняющуюся во времени, например конвейерную систему на заводе. Построив математическую модель, следует решить, каким образом ее можно использовать для получения данных о системе, которую она представляет.

Детерминированная или стохастическая? Если имитационная модель не содержит вероятностных (случайных) компонентов, она называется детерминированной. В детерминированной модели результат можно получить, когда для нее заданы все входные величины и зависимости, даже если в этом случае потребуется большое количество компьютерного времени. Однако многие системы моделируются с несколькими случайными входными данными компонентов, в результате чего создается стохастическая имитационная модель. Большинство систем массового обслуживания и управления запасами именно таким образом и моделируется. Стохастические имитационные модели выдают результат, который является случайным сам по себе, и поэтому он может рассматриваться лишь как оценка истинных характеристик модели. Это один из главных недостатков моделирования.

Непрерывная или дискретная? Говоря обобщенно, мы определяем дискретную и непрерывную модели подобно ранее описанным дискретной и непрерывной системам. Следует заметить, что дискретная модель не всегда используется для моделирования дискретной системы, и наоборот. Необходимо ли для конкретной системы использовать дискретную или непрерывную модель, зависит от задач исследования. Так, модель транспортного потока на автомагистрали будет дискретной, если вам необходимо учесть характеристики и движение отдельных машин. Однако, если машины можно рассматривать в совокупности, транспортный поток может быть описан с помощью дифференциальных уравнений в непрерывной модели.

Имитационные модели, которые мы дальше рассмотрим, будут дискретными, динамическими и стохастическими. В дальнейшем будем именовать их дискретно-событийными имитационными моделями. Так как детерминированные модели представляют собой особый вид стохастических моделей, тот факт, что мы ограничиваемся только такими моделями, не влечет за собой каких-либо погрешностей в обобщении.

Существующие подходы к визуальному моделированию сложных динамических систем.
Типовые системы имитационного моделирования

Имитационное моделирование на цифровых вычислительных машинах является одним из наиболее мощных средств исследования, в частности, сложных динамических систем. Как и любое компьютерное моделирование, оно дает возможность проводить вычислительные эксперименты с еще только проектируемыми системами и изучать системы, натурные эксперименты с которыми, из-за соображений безопасности или дороговизны, не целесообразны. В то же время, благодаря своей близости по форме к физическому моделированию, этот метод исследования доступен более широкому кругу пользователей.

В настоящее время, когда компьютерная промышленность предлагает разнообразнейшие средства моделирования, любой квалифицированный инженер, технолог или менеджер должен уметь уже не просто моделировать сложные объекты, а моделировать их с помощью современных технологий, реализованных в форме графических сред или пакетов визуального моделирования.

«Сложность изучаемых и проектируемых систем приводит к необходимости создания специальной, качественно новой техники исследования, использующей аппарат имитации – воспроизведения на ЭВМ специально организованными системами математических моделей функционирования проектируемого или изучаемого комплекса» (Н.Н. Моисеев. Математические задачи системного анализа. М.: Наука, 1981, с. 182).

В настоящее время существует великое множество визуальных средств моделирования. Договоримся не рассматривать в этой работе пакеты, ориентированные на узкие прикладные области (электроника, электромеханика и т. д.), поскольку, как отмечалось выше, элементы сложных систем относятся, как правило, к различным прикладным областям. Среди оставшихся универсальных пакетов (ориентированных на определенную математическую модель), мы не будем обращать внимание на пакеты, ориентированные на математические модели, отличные от простой динамической системы (уравнения в частных производных, статистические модели), а также на чисто дискретные и чисто непрерывные. Таким образом, предметом рассмотрения будут универсальные пакеты, позволяющие моделировать структурно-сложные гибридные системы.

Их можно условно разделить на три группы:

  • пакеты «блочного моделирования»;
  • пакеты «физического моделирования»;
  • пакеты, ориентированные на схему гибридного автомата.

Это деление является условным прежде всего потому, что все эти пакеты имеют много общего: позволяют строить многоуровневые иерархические функциональные схемы, поддерживают в той или иной степени технологию ООМ, предоставляют сходные возможности визуализации и анимации. Отличия обусловлены тем, какой из аспектов сложной динамической системы сочтен наиболее важным.

Пакеты «блочного моделирования» ориентированы на графический язык иерархических блок-схем. Элементарные блоки являются либо предопределенными, либо могут конструироваться с помощью некоторого специального вспомогательного языка более низкого уровня. Новый блок можно собрать из имеющихся блоков с использованием ориентированных связей и параметрической настройки. В число предопределенных элементарных блоков входят чисто непрерывные, чисто дискретные и гибридные блоки.

К достоинствам этого подхода следует отнести прежде всего чрезвычайную простоту создания не очень сложных моделей даже не слишком подготовленным пользователем. Другим достоинством является эффективность реализации элементарных блоков и простота построения эквивалентной системы. В то же время при создании сложных моделей приходится строить довольно громоздкие многоуровневые блок-схемы, не отражающие естественной структуры моделируемой системы. Другими словами, этот подход работает хорошо, когда есть подходящие стандартные блоки.

Наиболее известными представителями пакетов «блочного моделирования» являются:

  • подсистема SIMULINK пакета MATLAB (MathWorks, Inc.; http://www.mathworks.com);
  • EASY5 (Boeing)
  • подсистема SystemBuild пакета MATRIXX (Integrated Systems, Inc.);
  • VisSim (Visual Solution; http://www.vissim.com).

Пакеты «физического моделирования» позволяют использовать неориентированные и потоковые связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. Дискретная составляющая задается описанием дискретных событий (события задаются логическим условием или являются периодическими), при возникновении которых могут выполняться мгновенные присваивания переменным новых значений. Дискретные события могут распространяться по специальным связям. Изменение структуры уравнений возможно только косвенно через коэффициенты в правых частях (это обусловлено необходимостью символьных преобразований при переходе к эквивалентной системе).

Подход очень удобен и естественен для описания типовых блоков физических систем. Недостатками являются необходимость символьных преобразований, что резко сужает возможности описания гибридного поведения, а также необходимость численного решения большого числа алгебраических уравнений, что значительно усложняет задачу автоматического получения достоверного решения.

К пакетам «физического моделирования» следует отнести:

  • 20-SIM (Controllab Products B.V; http://www.rt.el.utwente.nl/20sim/);
  • Dymola (Dymasim; http://www.dynasim.se);
  • Omola , OmSim (Lund University; http://www.control.lth.se/~cace/omsim.html);

Как обобщение опыта развития систем этого направления междунородной группой ученых разработан язык Modelica (The Modelica Design Group; http://www.dynasim.se/modelica), предлагаемый в качестве стандарта при обмене описаниями моделей между различными пакетами.

Пакеты, основанные на использовании схемы гибридного автомата , позволяют очень наглядно и естественно описывать гибридные системы со сложной логикой переключений. Необходимость определения эквивалентной системы при каждом переключении заставляет использовать только ориентированные связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. К недостаткам следует также отнести избыточность описания при моделировании чисто непрерывных систем.

К этому направлению относится пакет Shift (California PATH: http://www.path.berkeley.edu/shift), а также отечественный пакет Model Vision Studium . Пакет Shift в большей степени ориентирован на описание сложных динамических структур, а пакет MVS – на описание сложных поведений.

Заметим, что между вторым и третьим направлениями нет непреодолимой пропасти. В конце концов, невозможность их совместного использования обусловлена лишь сегодняшними вычислительными возможностями. В то же время общая идеология построения моделей практически совпадает. В принципе, возможен комбинированный подход, когда в структуре модели должны выделяться составные блоки, элементы которых имеют чисто непрерывное поведение, и однократно преобразовываться к эквивалентному элементарному. Далее уже совокупное поведение этого эквивалентного блока должно использоваться при анализе гибридной системы.

Приведенный ниже пример может найти применение при решении большого класса задач. Например, проблемы управления человеческими и техническими ресурсами. Моделирование поможет любой коммерческой компании снизить расходы на материалы, кадры и оборудование.

Поиск оптимального количества сотрудников для предоставления клиентам требуемого уровня сервиса

На первом этапе устанавливается главный критерий уровня сервиса в банке – средний размер очереди. Далее выбираются соответствующие параметры системы для задания параметров модели: количество клиентов, интенсивность их прибытия, время на прием одного клиента и естественные отклонения от средних величин, которые периодически возникают, например, часы пик и сложные запросы клиентов.

Затем создается блок-схема, соответствующая структуре отделения банка и его бизнес-процессам. Модель учитывает только факторы, оказывающие влияние на анализируемую проблему. Например, наличие отделения обслуживания юридических лиц или кредитного отдела не влияет на обслуживание физических лиц, поскольку эти отделы физически и функционально отделены.


Наконец, после загрузки в модель входных данных, имитация запускается, и появляется возможность посмотреть работу отделения банка в динамике, что позволяет обработать и проанализировать результаты. Если средний размер очереди клиентов превысил установленный предел, то количество доступных сотрудников увеличивают, и эксперимент выполняется заново. Этот процесс может автоматически выполняться, пока не будет найдено оптимальное решение.

Слово имитация (от лат.-подражание) подразумевает воспроизведение каким-либо иным образом явлений, событий, действий объектов и т. д. Термин «имитация» - синоним «модели» (от лат. - мера, образец) означает любой материальный или нематериальный образ (изображение, схема, воспроизведение, материальное воплощение, представитель, объекты организационно-технологической задачи и т.п.).

Словосочетание «имитационная модель» некорректно, т.к., по сути, это тавтология, однако в середине XX века оно было введено в практику физического и математического моделирования.

Имитационные модели, являющиеся особым классом математических моделей, отличаются от аналитических тем, что использование ЭВМ в процессе их реализации играет определяющую роль. Имитационные модели не накладывают жестких ограничений на используемые исходные данные, которыми выступают интересующие объекты исследования, а позволяют в процессе работы использовать всю собранную информацию вне зависимости от ее формы представления и степени ее формализации.

Имитационное моделирование - метод исследования, который основан на замене изучаемой системы - имитирующей. Именно с имитирующей системой проводят эксперименты (на реальном объекте эксперименты не проводятся, чтобы не испортить его в случае нерентабельности решения, и дабы сократить временные затраты) и в результате получают информацию об изучаемой системе, желаемом объекте. Метод позволяет имитировать, например, работу моделей бизнес-процессов так, как они происходили бы в действительности, с учетом графиков рабочего времени и занятости временных ресурсов и наличия необходимого количества материальных ресурсов. В результате, можно оценить реальное время выполнения как одного процесса, так и заданного их множества, а так же просчитать ошибки и увидеть возможные риски при решении данным способом той или иной организационно-технической задачи.

Имитационная модель - математическое описание объекта с применением логики, которое может быть использовано для проведения экспериментов на компьютере в целях проектирования, анализа и оценки функционирования объекта, неподдающегося наблюдению в настоящее время или требующего больших затрат такого ресурса, как время.

Структура имитационного моделирования является последовательно-циклической. Последовательность определяется процессом имитационного моделирования, который можно разбить на ряд последовательных этапов, выполнение которых осуществляется от предыдущего к последующему. Цикличность проявляется в необходимости возвращения к предыдущим этапам и повторении уже однажды пройденного пути с некоторыми измененными в силу необходимости данными и параметрами модели, поставленной задачи.

Этапы имитационного моделирования:

Первый этап такой же, как и в любом исследовании. Он необходим для того, чтобы была оценена потребность изучения объекта или проблемы, возможность и способы решения поставленных задач, ожидаемые результаты, прогнозированные затраты и прибыль. Этот этап важен для практического применения метода моделирования. Часто к этому этапу возвращаются после окончания исследования модели и обработки результатов для изменения постановки задачи, а иногда и модернизации цели моделирования.

Второй этап включает в себя формализацию описания моделируемого объекта на основе выбранной теоретической базы, то есть на основе каких-либо выбранных показателей, характеризующих объект и его окружение. На этом этапе, на естественном языке дается описание исследуемого объекта, взаимодействия между элементами объекта и объекта с внешней средой. На основе описания объекта выбирается концепция его формального определения, и то, как он будет отображаться в имитационном моделировании. Таким образом, в конце данного этапа словесное описание исследуемой системы превращается в абстрактную математическую структуру. Заканчивается второй этап проверкой соответствия имитационной модели с реальной системы. Если этого нет, то следует провести коррекцию в определении теоретической базы модели.

Третий этап - проведение исследования на разработанной модели путем «прогона» ее на ЭВМ. Перед началом исследования полезно составить такую последовательность модели, которая позволила бы получить необходимый объем информации при данном составе и достоверности первоначальных данных. Далее на основе разработанного плана эксперимента осуществляют пробы имитационной модели на ЭВМ, т.е. первые «прогоны» этой модели. В конце этого этапа осуществляется обработка результатов с целью представления их в виде, наиболее удобном для анализа.

Четвертый этап приводит к анализу результатов исследования. На этом этапе определяются свойства реальной системы, которые наиболее важны для исследователя. На основе результатов подготавливаются окончательные выводы по проведенному моделированию, по работе программы, по заданному объекту, а также по оптимальности решения, заложенных в программе.

Пятый этап - это заключительный этап. Здесь формулируются окончательные выводы по заданному объекту, заложенного в имитационной модели, и разрабатываются рекомендации по использованию результатов моделирования для достижения поставленных предприятием целей. Часто на основе этих выводов возвращаются к началу процесса моделирования для необходимых изменений в теоретической и практической части модели и повторным исследованиям с измененной моделью для проверки наиболее оптимального решения. В результате нескольких подобных циклов получают имитационную модель, наилучшим образом удовлетворяющую поставленным целям и приводящая к полноценному описанию решаемой задачи и к ответу на нее.

Имитационные модели позволяют проверить, правильность понимания процессов в исследуемом объекте, допустимые риски и ошибки. Знание последних и дает возможность строить простые модели сложных в реальности явлений.

Имитационное моделирование подразделяется на несколько видов имитационного моделирования:

  • - агентное моделирование
  • - дискретно-событийное моделирование
  • - системная динамика
  • - статическое имитационное моделирование.

Рассмотрим каждый вид подробнее:

Агентное моделирование (1990-е - 2000-е гг.) - направление в имитационном моделировании, которое используется для исследования децентрализованных (разобщенных) систем, динамика функционирования которых определяется не глобальными правилами и законами узкой направленности, а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей -- получить представление об глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и их взаимодействии в системе. Агент -- сущность, обладающая активностью, автономным поведением, которая может принимать решения в соответствии с определенном набором правил, взаимодействовать с окружающей средой, а также самостоятельно изменяться.

Дискретно-событийное моделирование -- подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы («ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие). Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов, например, в строительстве. Он был основан Джеффри Гордоном в 60-х гг. XX века.

Системная динамика -- парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие, изменяющиеся во времени, а затем созданная на основе этих диаграмм модель, которая в последствие имитируется на компьютере. Такой вид моделирования качественней других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, строительства всевозможных объектов, модели производства. Метод был основан Джеем Форрестером в 1950 годах.

Статистическое имитационное моделирование - это моделирование, позволяющее воспроизводить на ЭВМ функционирование сложных хаотичных процессов.

При исследовании сложных систем, более всего подверженных случайным возмущениям, используются вероятностные аналитические модели и вероятностные имитационные модели. В вероятностном имитационном моделировании оперируют с конкретными случайными числовыми значениями параметров процесса или системы. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого объекта, процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных в результате исследования данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, которыми и являются задачи организационно-технологического характера, с помощью имитационного моделирования принято называть статистическим моделированием. При реализации на ПК статистического имитационного моделирования возникает задача получения на ПК случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий поставленную задачу генерирования последовательности случайных чисел с заданными законами распределения ресурсов, получил название "метод статистических испытаний" или "метод Монте-Карло".

Таким образом, метод имитационного моделирования при исследовании сложной проблемной ситуации, сложной организационно-технологической задачи предполагает выполнение всего пяти этапов, основанных на составлении математической модели, ее проверки и перепроверки ее работы с новыми данными.

построении математических моделей для описания изучаемых процессов;
  • использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.
  • Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты , начальные и граничные условия, исследовать, как при этом будет вести себя объект . Имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

    Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.

    В аналитических моделях поведение реальных процессов и систем (РПС) задается в виде явных функциональных зависимостей (уравнений линейных или нелинейных, дифференциальных или интегральных, систем этих уравнений). Однако получить эти зависимости удается только для сравнительно простых РПС. Когда явления сложны и многообразны исследователю приходится идти на упрощенные представления сложных РПС. В результате аналитическая модель становится слишком грубым приближением к действительности. Если все же для сложных РПС удается получить аналитические модели, то зачастую они превращаются в трудно разрешимую проблему. Поэтому исследователь вынужден часто использовать имитационное моделирование .

    Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течение заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.

    Имитационное моделирование - это совокупность методов алгоритмизации функционирования объектов исследований, программной реализации алгоритмических описаний, организации, планирования и выполнения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими функционирование РПС в течение заданного периода.

    Под алгоритмизацией функционирования РПС понимается пооперационное описание работы всех ее функциональных подсистем отдельных модулей с уровнем детализации, соответствующем комплексу требований к модели.

    "Имитационное моделирование" (ИМ)- это двойной термин. "Имитация" и " моделирование " - это синонимы. Фактически все области науки и техники являются моделями реальных процессов. Чтобы отличить математические модели друг от друга, исследователи стали давать им дополнительные названия. Термин "имитационное моделирование" означает, что мы имеем дело с такими математическими моделями, с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели при заданных исходных данных.

    Основное достоинство ИМ:

    1. возможность описания поведения компонент (элементов) процессов или систем на высоком уровне детализации;
    2. отсутствие ограничений между параметрами ИМ и состоянием внешней среды РПС;
    3. возможность исследования динамики взаимодействия компонент во времени и пространстве параметров системы;

    Эти достоинства обеспечивают имитационному методу широкое распространение.

    1. Если не существует законченной постановки задачи исследования и идет процесс познания объекта моделирования. Имитационная модель служит средством изучения явления.
    2. Если аналитические методы имеются, но математические процессы сложны и трудоемки, и имитационное моделирование дает более простой способ решения задачи.
    3. Когда кроме оценки влияния параметров (переменных) процесса или системы желательно осуществить наблюдение за поведением компонент (элементов) процесса или системы (ПС) в течение определенного периода.
    4. Когда имитационное моделирование оказывается единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях (реакции термоядерного синтеза, исследования космического пространства).
    5. Когда необходимо контролировать протекание процессов или поведение систем путем замедления или ускорения явлений в ходе имитации.
    6. При подготовке специалистов для новой техники, когда на имитационных моделях обеспечивается возможность приобретения навыков в эксплуатации новой техники.
    7. Когда изучаются новые ситуации в РПС. В этом случае имитация служит для проверки новых стратегий и правил проведения натурных экспериментов.
    8. Когда особое значение имеет последовательность событий в проектируемых ПС и модель используется для предсказания узких мест в функционировании РПС.

    Однако ИМ наряду с достоинствами имеет и недостатки:

    1. Разработка хорошей ИМ часто обходится дороже создания аналитической модели и требует больших временных затрат.
    2. Может оказаться, что ИМ неточна (что бывает часто), и мы не в состоянии измерить степень этой неточности.
    3. Зачастую исследователи обращаются к ИМ, не представляя тех трудностей, с которыми они встретятся и совершают при этом ряд ошибок методологического характера.

    И тем не менее ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.

    Одним из видов имитационного моделирования является статистическое имитационное моделирование , позволяющее воспроизводить на ЭВМ функционирование сложных случайных процессов.

    При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели .

    В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу . Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.

    Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях .

    В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.

    Имитационная модель – описание системы и ее поведения, которое может быть реализовано и исследовано в ходе операций на компьютере.

    Имитационное моделирование чаще всего применяется для того, чтобы описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и четко сформулировано. Математическое описание тогда сводится к уровню статической обработки результатов моделирования при нахождении макроскопических характеристик системы. Такой компьютерный эксперимент фактически претендует на воспроизведение натурного эксперимента. Имитационное моделирование – это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны метода решения полученной модели. В этом случае математическая модель заменяется имитатором или имитационной моделью. Имитационное моделирование позволяет осуществить проверку гипотез, исследовать влияние различных факторов и параметров.

    Имитационное моделирование – это метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности.

    Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику. Экспериментирование с моделью называют имитацией.

    Имитация – постижение сути явления без экспериментов на объекте.

    Имитация как метод решения нетривиальных задач получила начальное развитие в связи с созданием ЭВМ в 1950 – 1960 г.г. Разновидности имитации: метод Монте-Карло (метод статических испытаний); метод имитационного моделирования (статическое моделирование).

    Востребованность имитационного моделирования: 1)экспериментировать на реальном объекте дорого и невозможно; 2) аналитическую модель построить невозможно: в системе есть время, причинные связи, последствие, нелинейности, случайные переменные; 3) сымитировать поведение системы необходимо во времени.

    Цель имитационного моделирования – воспроизведение поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами (разработке симулятора исследуемой предметной области для проведения различных экспериментов).

    Виды имитационного моделирования.

    Агентное моделирование – относительно новое (1990 – 2000 гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадиграх моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей – получить представление об этих глобальных правилах, общем поведении системы исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействий этих объектов в системе. Агент – некая сущность, обладающая активностью, автономным поведением; может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

    Дискретно-событийное моделирование – подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и др. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений – от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.

    Системная динамика - для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По существу, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Форрестером в 1950 г.

    Некоторые области применения имитационного моделирования: бизнес-процессы, боевые действия, динамика населения, дорожное движение, ИТ-инфраструктура, управление проектами, экосистемы. Популярные компьютерные системы имитационного моделирования: AnyLogic,Aimsun,Arena,eM-Plant,Powersim,GPSS.

    Имитационное моделирование позволяет имитировать поведение системы во времени. Причем плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны и опасны.

    error: