2 выпуклый многоугольник. Многоугольники. Подробная теория с примерами. Защита персональной информации

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Понятие многоугольника

Определение 1

Многоугольником называется геометрическая фигура в плоскости, которая состоит из попарно соединенных между собой отрезков, соседние из которых не лежат на одной прямой.

При этом отрезки называются сторонами многоугольника , а их концы - вершинами многоугольника .

Определение 2

$n$-угольником называется многоугольник, у которого $n$ вершин.

Виды многоугольников

Определение 3

Если многоугольник всегда будет лежать по одну сторону от любой прямой, проходящей через его стороны, то многоугольник называется выпуклым (рис. 1).

Рисунок 1. Выпуклый многоугольник

Определение 4

Если многоугольник лежит по разные стороны хотя бы одной прямой, проходящей через его стороны, то многоугольник называется невыпуклым (рис. 2).

Рисунок 2. Невыпуклый многоугольник

Сумма углов многоугольника

Введем теорему о сумме углов -угольника.

Теорема 1

Сумма углов выпуклого -угольника определяется следующим образом

\[(n-2)\cdot {180}^0\]

Доказательство.

Пусть нам дан выпуклый многоугольник $A_1A_2A_3A_4A_5\dots A_n$. Соединим его вершину $A_1$ со всеми другими вершинами данного многоугольника (рис. 3).

Рисунок 3.

При таком соединении мы получим $n-2$ треугольника. Просуммировав их углы мы получим сумму углов данного -угольника. Так как сумма углов треугольника равняется ${180}^0,$ получим, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Теорема доказана.

Понятие четырехугольника

Используя определение $2$, легко ввести определение четырехугольника.

Определение 5

Четырехугольником называется многоугольник, у которого $4$ вершины (рис. 4).

Рисунок 4. Четырехугольник

Для четырехугольника аналогично определены понятия выпуклого четырехугольника и невыпуклого четырехугольника. Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм (рис. 5).

Рисунок 5. Выпуклые четырехугольники

Теорема 2

Сумма углов выпуклого четырехугольника равняется ${360}^0$

Доказательство.

По теореме $1$, мы знаем, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Следовательно, сумма углов выпуклого четырехугольника равняется

\[\left(4-2\right)\cdot {180}^0={360}^0\]

Теорема доказана.

Определение 1. Ломаной линией называется конечная последовательность отрезков, такая, что один из концов первого отрезка служит концом второго, другой конец второго отрезка служит концом третьего и т. п.

Отрезки, составляющие ломаную линию, называются звеньями. Соседние отрезки не лежат на одной прямой. Если концы ломаной совпадают, то она называется замкнутой . Ломаная может пересекать сама себя, касаться сама себя и налегать сама на себя. Если таких особенностей у ломаной нет, то она называется простой .

Определение 2. Простая замкнутая ломаная вместе с частью плоскости, ограниченной ею, называется многоугольником.

Сама ломаная при этом называется границей многоугольника, звенья ломаной – сторонами многоугольника, концы звеньев – вершинами многоугольника. Две соседних стороны многоугольника образуют угол. Число углов в многоугольнике равно числу сторон. У каждого многоугольника есть углы меньше 180°. Стороны и углы многоугольника называют элементами многоугольника.

Отрезок, соединяющий две несоседние вершины многоугольника, называется диагональю. В любом n-угольнике можно провести n-2 диагонали.

Определение 3. Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, содержащей его сторону. Многоугольники, не отвечающие этому условию, называются невыпуклыми.

Свойства выпуклых многоугольников.

Свойство 1. У выпуклого многоугольника все углы меньше 180°.

Доказательство: Возьмем любой угол А выпуклого многоугольника Р и его сторону а, идущую из вершины А. Пусть l - прямая, содержащая сторону а. Так как многоугольник Р выпуклый, то он лежит по одну сторону от прямой l. Поэтому угол А лежит по одну сторону от прямой l. Следовательно, угол А меньше развернутого, т. е. ÐA < 180°.

Свойство 2. Отрезок, соединяющий любые две точки выпуклого многоугольника, содержится в этом многоугольнике.

Доказательство: Возьмем любые две точки М и N выпуклого многоугольника Р. Многоугольник Р является пересечением нескольких полуплоскостей. Отрезок MN лежит в каждой из этих полуплоскостей. Поэтому он содержится и в многоугольнике Р.

Свойство 3. Сумма углов выпуклого многоугольника равна (n – 2)∙180°.

Доказательство: Возьмем внутри выпуклого многоугольника Р произвольную точку О и соединим ее со всеми вершинами многоугольника. Образуется n треугольников, сумма углов каждого из которых равна 180°. Углы при вершине О в сумме дают 360° = 2∙180°. Поэтому сумма углов многоугольника равна n∙180° - 2∙180° = (n – 2)∙180°.


Понятие параллелограмма. Свойства параллелограмма.

Определение 1. Четырехугольник, противоположные стороны которого попарно параллельны, называется параллелограммом.

У каждого параллелограмма четыре вершины, четыре стороны, четыре угла. Две стороны, имеющие общие концы, называются смежными . У каждого параллелограмма две диагонали – отрезки, соединяющие противоположные вершины параллелограмма. Сумма углов параллелограмма равна 360°.

Свойства параллелограмма.

Свойство 1. У параллелограмма противоположные стороны равны и противоположные углы попарно равны.

Доказательство: Проведем диагональ АС. АС – общая;

ÐВАС = ÐАСD (внутренние накрест лежащие при АВ II BC и секущей АС);

ÐВСА = ÐСАD (внутренние накрест лежащие при АD II BC и секущей АС);

Þ DАВС = DАDС (по 2 признаку).

АВ = CD; BC = AD; ÐВ = ÐD.

ÐА = ÐВАС + ÐСAD; ÐС = ÐАСB + ÐАСD; Þ ÐА = ÐС.

Свойство 2. У параллелограмма углы, прилежащие к одной стороне, в сумме дают 180°.

Доказательство:

ÐВ + ÐА =180° (внутренние односторонние при ВС II AD и секущей АB).

ÐB + ÐС =180° (внутренние односторонние при AВ II CD и секущей BC).

ÐD + ÐC =180° (внутренние односторонние при ВС II AD и секущей CD).

ÐA + ÐD =180° (внутренние односторонние при AВ II CD и секущей AD).

Свойство 3. Диагонали параллелограмма точкой пересечения делятся пополам.

Доказательство: Проведем диагонали АС и BD, пересекающиеся в точке О.

АВ = СD (по первому св-ву параллелограмма);

ÐAВO = ÐODC (внутренние накрест лежащие при АВ II CD и секущей BD);

ÐВАO = ÐOСD (внутренние накрест лежащие при АB II CD и секущей АС);

Þ DАВO = DODС (по 2 признаку).

ВO = OD; AO = OC.


Признаки параллелограмма.

Признак 1. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.

Дано: ABCD – четырехугольник; АD II BC,

Понятие многоугольника

Определение 1

Многоугольником называется геометрическая фигура в плоскости, которая состоит из попарно соединенных между собой отрезков, соседние из которых не лежат на одной прямой.

При этом отрезки называются сторонами многоугольника , а их концы - вершинами многоугольника .

Определение 2

$n$-угольником называется многоугольник, у которого $n$ вершин.

Виды многоугольников

Определение 3

Если многоугольник всегда будет лежать по одну сторону от любой прямой, проходящей через его стороны, то многоугольник называется выпуклым (рис. 1).

Рисунок 1. Выпуклый многоугольник

Определение 4

Если многоугольник лежит по разные стороны хотя бы одной прямой, проходящей через его стороны, то многоугольник называется невыпуклым (рис. 2).

Рисунок 2. Невыпуклый многоугольник

Сумма углов многоугольника

Введем теорему о сумме углов -угольника.

Теорема 1

Сумма углов выпуклого -угольника определяется следующим образом

\[(n-2)\cdot {180}^0\]

Доказательство.

Пусть нам дан выпуклый многоугольник $A_1A_2A_3A_4A_5\dots A_n$. Соединим его вершину $A_1$ со всеми другими вершинами данного многоугольника (рис. 3).

Рисунок 3.

При таком соединении мы получим $n-2$ треугольника. Просуммировав их углы мы получим сумму углов данного -угольника. Так как сумма углов треугольника равняется ${180}^0,$ получим, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Теорема доказана.

Понятие четырехугольника

Используя определение $2$, легко ввести определение четырехугольника.

Определение 5

Четырехугольником называется многоугольник, у которого $4$ вершины (рис. 4).

Рисунок 4. Четырехугольник

Для четырехугольника аналогично определены понятия выпуклого четырехугольника и невыпуклого четырехугольника. Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм (рис. 5).

Рисунок 5. Выпуклые четырехугольники

Теорема 2

Сумма углов выпуклого четырехугольника равняется ${360}^0$

Доказательство.

По теореме $1$, мы знаем, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Следовательно, сумма углов выпуклого четырехугольника равняется

\[\left(4-2\right)\cdot {180}^0={360}^0\]

Теорема доказана.

Выпуклое множество точек на плоскости.

Множество точек на плоскости или в трехмерном пространстве называется выпуклым , если любые две точки этого множества можно соединить отрезком прямой, полностью лежащим в данном множестве.

Теорема 1 . Пересечение конечного числа выпуклых множеств является выпуклым множеством.

Следствие. Пересечение конечного числа выпуклых множеств – выпуклое множество.

Угловые точки.

Граничная точка выпуклого множества называется угловой , если через нее можно провести отрезок, все точки которого не принадлежат данному множеству.

Различные по форме множества могут иметь конечное или бесконечное количество угловых точек.

Выпуклый многоугольник.

Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.

Теорема: Сумма углов выпуклого n-угольника равна 180˚ *(n-2)

6) Решение систем m линейных неравенств с двумя переменными

Дана система т линейных неравенств с двумя переменными

Знаки некоторых или всех неравенств могут быть ≥.

Рассмотрим первое неравенство в системе координат Х1ОХ2. Построим прямую

которая является граничной прямой.

Эта прямая делит плоскость на две полуплоскости 1 и 2 (рис. 19.4).

Полуплоскость 1 содержит начало координат, полуплоскость 2 не содержит начала координат.

Для определения, по какую сторону от граничной прямой расположена заданная полуплоскость, надо взять произвольную точку на плоскости (лучше начало координат) и подставить координаты этой точки в неравенство. Если неравенство справедливо, то полуплоскость обращена в сторону этой точки, если не справедливо, то в противоположную от точки сторону.

Направление полуплоскости на рисунках показываем стрелкой.

Определение 15. Решением каждого неравенства системы является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.

Определение 16. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью решения системы (ОР).

Определение 17. Область решения системы, удовлетворяющая условиям неотрицательности (xj ≥ 0, j =), называется областью неотрицательных, или допустимых, решений (ОДР).

Если система неравенств совместна, то ОР и ОДР могут быть многогранником, неограниченной многогранной областью или одной точкой.

Если система неравенств несовместна, то ОР и ОДР - пустое множество.

Пример 1. Найти ОР и ОДР системы неравенств и определить координаты угловых точек ОДР

Решение. Найдем ОР первого неравенства: х1 + 3x2 ≥ 3. Построим граничную прямую х1 +3x2 – 3 = 0 (рис. 19.5). Подставим координаты точки (0,0) в неравенство: 1∙0 + 3∙0 > 3; так как координаты точки (0,0) не удовлетворяют ему, то решением неравенства (19.1) является полуплоскость, не содержащая точку (0,0).


Аналогично найдем решения остальных неравенств системы. Получим, что ОР и ОДР системы неравенств является выпуклый многогранник ABCD.

Найдем угловые точки многогранника. Точку А определим как точку пересечения прямых

Решая систему, получим А(3/7, 6/7).

Точку В найдем как точку пересечения прямых

Из системы получим B(5/3, 10/3). Аналогично найдем координаты точек С и D: С(11/4; 9/14), D(3/10; 21/10).

Пример 2. Найти ОР и ОДР системы неравенств

Решение. Построим прямые и определим решения неравенств (19.5)-(19.7). ОР и ОДР являются неограниченные многогранные области ACFM и ABDEKM соответственно (рис. 19.6).

Пример 3. Найти ОР и ОДР системы неравенств

Решение. Найдем решения неравенств (19.8)-(19.10) (рис. 19.7). ОР представляет неограниченную многогранную область ABC; ОДР - точка В.

Пример 4. Найти OP и ОДР системы неравенств

Решение. Построив прямые, найдем решения неравенств системы. ОР и ОДР несовместны (рис. 19.8).

УПРАЖНЕНИЯ

Найти ОР и ОДР систем неравенств

Теорема. Если xn ® a, то .

Доказательство. Из xn ® a следует, что . В то же время:

Т.е. , т.е. . Теорема доказана.

Теорема. Если xn ® a, то последовательность {xn} ограничена.

Следует отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость.

Например, последовательность не имеет предела, хотя

Разложение функций в степенные ряды.

Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

Итого, получаем:

Рассмотрим способ разложения функции в ряд при помощи интегрирования.

С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.

Находим дифференциал функции и интегрируем его в пределах от 0 до х.

error: