Прямой многогранник. Понятие многогранника. Многогранные углы. Многогранники

Муниципальное Образовательное Учреждение

Гимназия № 26

Геометрия

Основные виды многогранников и их свойства

Выполнила:

Ученица 9-1 класса

Байсакова Ляззат

Преподаватель:

Сысоева Елена Алексеевна

Челябинск


Введение

До настоящего времени в курсе геометрии мы занимались планиметрией - изучали свойства плоских геометрических фигур, то есть фигур, полностью расположенных в плоскости. Но большинство окружающих нас предметов не являются полностью плоскими, они расположены в пространстве. Раздел геометрии, в котором изучают свойства фигур в пространстве, называется стереометрией ( от др. греч. στερεός, "стереос" - "твёрдый, пространственный" и μετρέω - "измеряю").

Основными фигурами в пространстве являются точка , прямая и плоскость . Наряду с данными простейшими фигурами в стереометрии рассматриваются геометрические тела и их поверхности. При изучении геометрических тел, пользуются изображениями на чертеже.

Рисунок 1 Рисунок 2

На рисунке 1 изображена пирамида, на рисунке 2 - куб. Данные геометрические тела называются многогранниками. Рассмотрим некоторые виды и свойства многогранников.

Многогранная поверхность. Многогранник

Многогранной поверхностью называют объединение конечного числа плоских многоугольников такое, что каждая сторона любого из многоугольников является в то же время стороной другого (но только одного) многоугольника, называемого смежным с первым многоугольником.

От любого из многоугольников, составляющих многогранную поверхность, можно дойти до любого другого, двигаясь по смежным многоугольникам.

Многоугольники, составляющие многогранную поверхность, называются ее гранями; стороны многоугольников называются ребрами, а вершины - вершинами многогранной поверхности.

На рис.1 изображены объединения многоугольников, удовлетворяющие указанным требованиям и являющиеся многогранными поверхностями. На рис.2 изображены фигуры, не являющиеся многогранными поверхностями.

Многогранная поверхность делит пространство на две части - внутреннюю область многогранной поверхности и внешнюю область. Из двух областей внешней будет та, в которой можно провести прямые, целиком принадлежащие области.

5 Объединение многогранной поверхности и ее внутренней области называют многогранником. При этом многогранную поверхность и ее внутреннюю область называют соответственно поверхностью и внутренней областью многогранника. Грани, ребра и вершины поверхности многогранника называют соответственно гранями, ребрами и вершинами многогранника.

Пирамида

Многогранник, одна из граней которого - произвольный многогранник, а остальные грани - треугольники, имеющие одну общую вершину, называется пирамидой.

Многоугольник называется основанием пирамиды, а остальные грани (треугольники) называются боковыми гранями пирамиды.

Различают треугольные, четырехугольные, пятиугольные и т.д. пирамиды в зависимости от вида многоугольника, лежащего в основании пирамиды.

Треугольную пирамиду также называют тетраэдром. На рис.1 изображена четырехугольная пирамида SABCD с основанием ABCD и боковыми гранями SAB, SBC, SCD, SAD.

Стороны граней пирамиды называются ребрами пирамиды. Ребра, принадлежащие основанию пирамиды, называют ребрами основания, а все остальные ребра - боковыми ребрами. Общая вершина всех треугольников (боковых граней) называется вершиной пирамиды (на рис.1 точка S - вершина пирамиды, отрезки SA, SB, SC, SD - боковые ребра, отрезки АВ, ВС, CD, AD - ребра основания).

Высотой пирамиды называется отрезок перпендикуляра, проведенного из вершины пирамиды S к плоскости основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра). На рис.1 SO - высота пирамиды.

Правильная пирамида. Пирамида называется правильной, если основанием пирамиды является правильный многоугольник, а ортогональная проекция вершины на плоскость основания совпадает с центром многоугольника, лежащего в основании пирамиды.

Все боковые ребра правильной пирамиды равны между собой; все боковые грани - равные равнобедренные треугольники.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой этой пирамиды. На рис.2 SN - апофема. Все апофемы правильной пирамиды равны между собой.

Призма

Многогранник, две грани которого - равные n -угольники, лежащие в параллельных плоскостях, а остальные n граней - параллелограммы, называетсяn -угольной призмой.

многогранник пирамида призма параллелепипед

Пару равных n -угольников называют основаниями призмы. Остальные грани призмы называют ее боковыми гранями, а их объединение - боковой поверхностью призмы. На рис.1 изображена пятиугольная призма.

Стороны граней призмы называют ребрами, а концы ребер - вершинами призмы. Ребра, не принадлежащие основанию призмы, называют боковыми ребрами.

Призму, боковые ребра которой перпендикулярны плоскостям оснований, называют прямой призмой. В противном случае призма называется наклонной.

Отрезок перпендикуляра к плоскостям оснований призмы, концы которого принадлежат этим плоскостям, называют высотой призмы.

Прямая призма, основанием которой является правильный многоугольник, называется правильной призмой.

Параллелепипед

Параллелепипед - шестигранник, противоположные грани которого попарно параллельны. Параллелепипед имеет 8 вершин, 12 рёбер; его грани представляют собой попарно равные параллелограммы.

Параллелепипед называется прямым, если его боковые ребра перпендикулярны к плоскости основания (в этом случае 4 боковые грани - прямоугольники); прямоугольным, если этот параллелепипед прямой и основанием служит прямоугольник (следовательно, 6 граней - прямоугольники);

Параллелепипед , все грани которого квадраты, называется кубом.

Объём Параллелепипед равен произведению площади его основания на высоту.

Объем тела

Каждый многогранник имеет объем, который можно измерить с помощью выбранной единицы измерения объемов. За единицу измерения объемов принимают куб, ребро которого равно единице измерения отрезков. Куб с ребром 1 см называется кубическим сантиметром . Аналогично определяется кубический метр и кубический миллиметр , и т.д.

В процессе измерения объемов при выбранной единице измерения объем тела выражается положительным числом, которое показывает, сколько единиц измерения объемов и ее частей укладывается в этом теле. Число, выражающее объем тела, зависит от выбора единицы измерения объемов. Поэтому единица измерения объемов указывается после этого числа.

Основные свойства объемов:

1. Равные тела имеют равные объемы.

2. Если тело составлено из нескольних тел, то его объем равен сумме объемов этих тел.

Для нахождения объемов тел в ряде случаев удобно пользоваться теоремой, получившей название принцип Кавальери .

Принцип Кавальери состоит в следующем: если при пересечении двух тел любой плоскостью, параллельной некоторой заданной плоскости, получаются сечения равной площади, то объёмы тел равны между собой.

Заключение

Итак, многогранники изучает раздел геометрии под названием стереометрия. Многогранники бывают разных видов (пирамида, призма и т.д.) и имеют разные свойства. Также, следует отметить, что многогранники в отличие от плоских фигур имеют объем и располагаются в пространстве.

Большинство окружающих нас предметов находятся в пространстве, и изучение многогранников помогает нам составить представление об окружающей нас реальности с точки зрения геометрии.

Список используемой литературы

1. Геометрия. Учебник для 7-9 классов.

3. Википедия

Трёхгранные и многогранные углы:
Трёхгранным углом называется фигура
образованная тремя плоскостями, ограниченными тремя лучами, исходящими из
одной точки и не лежащей в одной
плоскости.
Рассмотрим какой-нибудь плоский
многоугольник и точку лежащую вне
плоскости этого многоугольника.
Проведём из этой точки лучи,
проходящие через вершины
многоугольника. Мы получим фигуру,
которая называется многогранным
углом.

Трёхгранный угол - это часть пространства,
ограниченная тремя плоскими углами с общей
вершиной
и
попарно
общими
сторонами,
не
лежащими в одной плоскости. Общая вершина О этих
углов
называется
вершиной
трёхгранного
угла.
Стороны углов называются рёбрами, плоские углы
при вершине трёхгранного угла называются его
гранями. Каждая из трёх пар граней трёхгранного угла
образует двугранный угол

Основные свойства трехгранного угла
1. Каждый плоский угол трёхгранного угла меньше суммы
двух других его плоских углов.
+ > ; + > ; + >
α, β, γ - плоские углы,
A, B, C - двугранные углы, составленные плоскостями
углов β и γ, α и γ, α и β.
2. Сумма плоских углов трёхгранного угла меньше
360 градусов
3. Первая теорема косинусов
для трёхгранного угла
4. Вторая теорема косинусов для трёхгранного угла

,
5. Теорема синусов
Многогранный угол, внутренняя область которого
расположена по одну сторону от плоскости каждой из
его граней, называется выпуклым многогранным
углом. В противном случае многогранный угол
называется невыпуклым.

Многогранник- это тело, поверхность
которого состоит из конечного числа
плоских многоугольников.

Элементы многогранника
Грани многогранника - это
многоугольники, которые его
образуют.
Ребра многогранника - это стороны
многоугольников.
Вершины многогранника - это
вершины многоугольника.
Диагональ многогранника - это
отрезок, соединяющий 2 вершины,
не принадлежащие одной грани.

Многогранники
выпуклый
невыпуклый

Многогранник называется выпуклым,
если он расположен по одну сторону
плоскости каждого многоугольника на его
поверхности.

10. ВЫПУКЛЫЕ МНОГОГРАННЫЕ УГЛЫ

Многогранный угол называется выпуклым, если он является выпуклой
фигурой, т. е. вместе с любыми двумя своими точками целиком содержит и
соединяющий их отрезок.
На рисунке приведены примеры
выпуклого
и
невыпуклого
многогранных углов.
Теорема. Сумма всех плоских углов выпуклого многогранного угла меньше 360°.

11. ВЫПУКЛЫЕ МНОГОГРАННИКИ

Многогранник угол называется выпуклым, если он является выпуклой фигурой,
т. е. вместе с любыми двумя своими точками целиком содержит и соединяющий
их отрезок.
Куб, параллелепипед, треугольные призма и пирамида являются выпуклыми
многогранниками.
На рисунке приведены примеры выпуклой и невыпуклой пирамиды.

12. СВОЙСТВО 1

Свойство 1. В выпуклом многограннике все грани являются
выпуклыми многоугольниками.
Действительно, пусть F - какая-нибудь грань многогранника
M, и точки A, B принадлежат грани F. Из условия выпуклости
многогранника M, следует, что отрезок AB целиком содержится
в многограннике M. Поскольку этот отрезок лежит в плоскости
многоугольника F, он будет целиком содержаться и в этом
многоугольнике, т. е. F - выпуклый многоугольник.

13. СВОЙСТВО 2

Свойство 2. Всякий выпуклый многогранник может быть составлен из
пирамид с общей вершиной, основания которых образуют поверхность
многогранника.
Действительно, пусть M - выпуклый многогранник. Возьмем какую-нибудь
внутреннюю точку S многогранника M, т. е. такую его точку, которая не
принадлежит ни одной грани многогранника M. Соединим точку S с
вершинами многогранника M отрезками. Заметим, что в силу выпуклости
многогранника M, все эти отрезки содержатся в M. Рассмотрим пирамиды с
вершиной S, основаниями которых являются грани многогранника M. Эти
пирамиды целиком содержатся в M, и все вместе составляют многогранник M.

14. Правильные многогранники

Если грани многогранника являются
правильными многоугольниками с одним и
тем же числом сторон и в каждой вершине
многогранника сходится одно и то же число
ребер, то выпуклый многогранник
называется правильным.

15. Названия многогранников

пришли из Древней Греции,
в них указывается число граней:
«эдра» грань;
«тетра» 4;
«гекса» 6;
«окта» 8;
«икоса» 20;
«додека» 12.

16. Правильный тетраэдр

Рис. 1
Составлен из четырёх
равносторонних
треугольников. Каждая
его вершина является
вершиной трёх
треугольников.
Следовательно, сумма
плоских углов при
каждой вершине равна
180º.

17.

Правильный октаэдр
Рис. 2
Составлен из восьми
равносторонних
треугольников. Каждая
вершина октаэдра
является вершиной
четырёх треугольников.
Следовательно, сумма
плоских углов при
каждой вершине 240º.

18.

Правильный икосаэдр
Рис. 3
Составлен из двадцати
равносторонних
треугольников. Каждая
вершина икосаэдра
является вершиной пяти
треугольников.
Следовательно, сумма
плоских углов при
каждой вершине равна
300º.

19. Куб (гексаэдр)

Рис.
4
Составлен из шести
квадратов. Каждая
вершина куба является
вершиной трёх квадратов.
Следовательно, сумма
плоских углов при каждой
вершине равна 270º.

20.

Правильный додекаэдр
Рис. 5
Составлен из двенадцати
правильных
пятиугольников. Каждая
вершина додекаэдра
является вершиной трёх
правильных
пятиугольников.
Следовательно, сумма
плоских углов при
каждой вершине равна
324º.

21.

Таблица № 1
Правильный
многогранник
Число
граней
вершин
рёбер
Тетраэдр
4
4
6
Куб
6
8
12
Октаэдр
8
6
12
Додекаэдр
12
20
30
Икосаэдр
20
12
30

22.

Формула Эйлера
Сумма числа граней и вершин любого
многогранника
равна числу рёбер, увеличенному на 2.
Г+В=Р+2
Число граней плюс число вершин минус число
рёбер
в любом многограннике равно 2.
Г+В Р=2

23.

Таблица № 2
Число
Правильный
многогранник
Тетраэдр
граней и
вершин
(Г + В)
рёбер
(Р)
4+4=8
6
«тетра» 4;
Куб
6 + 8 = 14
12
«гекса»
6;
Октаэдр
8 + 6 = 14
12
«окта»
Додекаэдр
12 + 20 = 32
30
додека»
12.
30
«икоса»
20
Икосаэдр
20 + 12 = 32
8

24.

25.

26. Двойственность правильных многогранников

Гексаэдр (куб) и октаэдр образуют
двойственную пару многогранников. Число
граней одного многогранника равно числу
вершин другого и наоборот.

27.

Возьмем любой куб и рассмотрим многогранник с
вершинами в центрах его граней. Как нетрудно
убедиться, получим октаэдр.

28.

Центры граней октаэдра служат вершинами куба.

29.

Многогранники в природе, химии и биологии
Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников.
Кристалл
пирита-
природная
модель
додекаэдр.
Кристаллы
поваренной
соли передают
форму куб.
Монокристалл
Сурьменистый
Хрусталь
алюминиевосернокислый
(призма)
калиевых квасцов натрий – тетраэдра.
имеет форму
октаэдра.
В молекуле
метана имеет
форму
правильного
тетраэдра.
Икосаэдр оказался в центре внимания биологов в их спорах относительно формы
вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы
установить его форму, брали различные многогранники, направляли на них свет
под теми же углами, что и поток атомов на вирус. Оказалось, что только один
многогранник дает точно такую же тень - икосаэдр.
В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем
октаэдр, куб и, наконец, додекаэдро-икосаэдрическая структура гаструлы. И наконец,
самое, пожалуй, главное – структура ДНК генетического кода жизни – представляет
собой четырехмерную развертку (по оси времени) вращающегося додекаэдра!

30.

Многогранники в искусстве
«Портрет Монны Лизы»
Композиция рисунка основана на золотых
треугольниках, являющихся частями
правильного звездчатого пятиугольника.
гравюра «Меланхолия»
На переднем плане картины
изображен додекаэдр.
«Тайная Вечеря»
Христос со своими учениками изображён на
фоне огромного прозрачного додекаэдр.

31.

Многогранники в архитектуре
Музеи Плодов
Музеи Плодов в Яманаши создан с помощью
трехмерного моделирования.
Пирамиды
Александрийский маяк
Спасская башня
Кремля.
Четырехъярусная Спасская башня с церковью Спаса
Нерукотворного - главный въезд в Казанский кремль.
Возведена в XVI веке псковскими зодчими Иваном
Ширяем и Постником Яковлевым по прозванию
«Барма». Четыре яруса башни представляют из себя
куб, многогранники и пирамиду.

Это такое тело, поверхность которого состоит из конечной числа плоских многоугольников. Многогранник называется выпуклым , если он лежит по одну сторону от плоскости каждой из плоских многоугольников на его поверхности. Общая часть такой плоскости и поверхности выпуклого многоугольника называется гранью .
На рисунке ниже слева изображен неопуклий многогранник; на рисунке справа - выпуклый.

Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника , а вершины граней - вершинами многогранника .

Призма
Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников (см. рисунок). Многоугольники называются основаниями призмы , а отрезки, соединяющие соответствующие вершины - боковыми ребрами призмы .

Обозначения: .
Боковая поверхность призмы состоит из параллелограммов. Каждый из них имеет две стороны, которые являются соответствующими сторонами основания, а две другие - смежными боковыми ребрами. Основания призмы равны и лежат в параллельных плоскостях. Боковые ребра призмы параллельны и равны. Высотой призмы называется расстояние между плоскостями ее оснований.
Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы . (На рисунке - высота, и диагонали.)
Диагональные сечения - это сечения призмы плоскостями, проходящими через два боковых ребра, не принадлежащих одной грани (см. рисунки).

Призма называется прямой , если ее боковые ребра перпендикулярны к основаниям. В противном случае призма называется наклонной .
Боковые грани прямой призмы - прямоугольники, высота прямой призмы равна боковому ребру, диагональные сечения являются прямоугольниками.
Боковой поверхностью призмы называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.
Теорема 1. Боковая поверхность прямой призмы равна произведению периметра основания и высоты, то есть длины бокового ребра.
Перпендикулярным сечением призмы будем называть сечение плоскостью, перпендикулярной боковому ребру призмы (а это значит, что эта плоскость является перпендикулярной всех боковых ребер призмы).
Теорема 2. Боковая поверхность наклонной призмы равна произведению длины бокового ребра и периметра перпендикулярного сечения.
На рисунке - перпендикулярное сечение.
S б = H P осн;
S п = S б + 2S осн.
S б = l P тэр;
S п = S б + 2S осн.

Очевидно, что эта теорема верна и в случае прямой призмы, потому что тогда перпендикулярное сечение будет сечением плоскостью, параллельной плоскостям оснований призмы.
Обратите внимание: если некоторый многоугольник является перпендикулярным сечением призмы, то его внутренние углы являются линейными углами двугранных углов между соответствующими боковыми гранями.
В случае прямой призмы линейными углами двугранных углов между боковыми гранями являются непосредственно углы основания.
Пример
На рисунке - прямая призма.

- линейный угол двугранного угла между гранями и .
Призма называется правильной , если:
в основе ее лежит правильный многоугольник;
призма является прямой.
Параллелепипед
Собой параллелепипед называется призма, в основании которой лежит параллелограмм.
Все грани параллелепипеда - параллелограммы.
Грани параллелепипеда, не имеющие общих вершин, называются противоположными .
Теорема 1. Противоположные грани параллелепипеда являются параллельными и ровными.
Параллелепипед остается собой параллелепипед во всех случаях, когда за его основу считаем любую его грань (см. рисунок).
Теорема 2. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.
Из этого следует, что точка пересечения диагоналей параллелепипеда является его центром симметрии.
Обратите внимание: у прямого параллелепипеда имеются четыре диагонали, которые попарно равны друг другу.
На рисунке ; .
Это следует из свойств наклонных, так - равные перпендикуляры к плоскости основания ABCD.

Если две диагонали прямого параллелепипеда выходящие из соседних вершин, то большая из них та, которая проектируется в большую диагональ основания, то есть такую диагональ параллелограмма, которая лежит против тупого угла. Следовательно, если на приведенном выше рисунке считать угол ABC тупой, получим , .
Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным собой параллелепипед (см. рисунок).

Все грани прямоугольного параллелепипеда - прямоугольники, которые можно разбить на три пары равных между собой. Произвольную грань прямоугольного параллелепипеда можно считать его основой. Учитывая, что при параллельном проектировании произвольный параллелограмм может изображаться произвольным параллелограммом, изображение прямоугольного параллелепипеда никак не отличается от изображения любого прямого параллелепипеда.
Длины непараллельных ребер называются линейными размерами (измерениями) прямоугольного параллелепипеда.
Теорема 3. В прямоугольном параллелепипеде все диагонали равны. Квадрат диагонали равен сумме квадратов трех его измерений.
Все двугранные углы прямоугольного параллелепипеда являются прямыми.
Прямоугольный параллелепипед имеет три пары равных между собой диагональных сечений. Каждый из этих сечений является прямоугольником (см. рисунки).

Каждая пара сечений пересекаются по прямой, проходящей через точки пересечения диагоналей противоположных граней. Отрезки между этими точками являются параллельными и равны одному из ребер прямоугольного параллелепипеда.
Прямоугольным треугольник, который образуется диагональю прямоугольного параллелепипеда, диагональю боковой грани и стороной основания (см. рисунок). Например, .

Прямоугольный параллелепипед имеет центр симметрии - это точка пересечения его диагоналей.
Он также имеет три плоскости симметрии, проходящие через центр симметрии параллельно граням.
Прямоугольный параллелепипед, у которого все ребра равны, называется кубом .
Плоскость любого диагонального сечения куба является его плоскостью симметрии. Таким образом, куб имеет девять плоскостей симметрии.
На рисунке рассмотрим взаимное расположение некоторых элементов прямого параллелепипеда:

- угол между диагональю боковой грани и плоскостью основания ( - перпендикуляр, - наклонная, СD - проекция).
- угол между диагональю прямого параллелепипеда и плоскостью основания ( - перпендикуляр, - наклонная, АС - проекция).
- угол наклона диагонали к боковой грани (AD - перпендикуляр, - наклонная, - проекция).
Пусть - прямой параллелепипед (см. рисунок), где ABCD - ромб. Проведем его сечение плоскостью, проходящей через диагональ основания BD и вершину .

В сечении получим равнобедренный треугольник .
- линейный угол двугранного угла между плоскостями основания и сечения. по свойству диагоналей ромба, - перпендикуляр, - наклонная, СО - проекция. По теореме о трех перпендикуляры: .
Пирамида
Пирамидой называется многогранник, который состоит из плоского многоугольника - основания пирамиды, точки, не лежащей в плоскости основания - вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами .
Высота пирамиды - перпендикуляр, опущенный из вершины пирамиды на плоскость основания.
Пирамида называетсяn -угольной , если ее основанием является n -угольник. Треугольная пирамида называется также тетраэдром . Боковая грань пирамиды - треугольник. Одной из его вершин является вершина пирамиды, а противоположной стороной - сторона основания пирамиды.
На рисунке SO - высота пирамиды. Тогда - угол между боковым ребром и плоскостью основания (SO - перпендикуляр, - наклонная, ОА - проекция).

Из основания высоты пирамиды (точки В ) проведем перпендикуляр на сторону основания (например, АЕ ). Основание этого перпендикуляра (точка F ) соединим с вершиной пирамиды (точка S ). По теореме о трех перпендикуляры: . (SO - перпендикуляр, SP - наклонная, OF - проекция, по построению.) Следовательно, - линейный угол двугранного угла между плоскостью боковой грани ASE и плоскостью основания.
Для решения задач о пирамиде очень важно выяснять, где размещена основа ее высоты.
1. Если выполняется хотя бы одно из следующих условий:
все боковые ребра пирамиды равны;
все боковые ребра наклонены к плоскости основания под одним и тем же углом;
все боковые ребра образуют одинаковые углы с высотой пирамиды;
все боковые ребра равноудалены от основания высоты, то основанием высоты пирамиды является центр окружности, описанной вокруг основания пирамиды.
Боковое ребро l , высота H и радиус R описанной вокруг основания окружности образуют прямоугольный треугольник:

В этом случае боковую поверхность можно найти по формуле , где l - длина бокового ребра, , ... - плоские углы при вершине.
2. Если выполняется хотя бы одно из следующих условий:
все боковые грани наклонены к плоскости основания под одним и тем же углом;
все боковые грани имеют одинаковые высоты;
высоты боковых граней образуют одинаковые углы с высотой пирамиды;
боковые грани равноудалены от основания высоты, - то основание высоты лежит в центре круга, вписанного в основание пирамиды.
На рисунке - прямоугольный , - радиус вписанной окружности в ABCDEF ;

- высота пирамиды, SP - высота боковой грани;
- линейный угол двугранного угла между боковой гранью и плоскостью основания;
О - центр вписанного в основание круга, то есть точка пересечения биссектрис ABCDEF .
В этом случае .
3. Если боковое ребро перпендикулярно к плоскости основания, то это ребро является высотой пирамиды (см. рисунки).

В этом случае и - углы наклона боковых ребер и соответственно к плоскости основания. является линейным углом двугранного угла между боковыми гранями SAC и SBA .
4. Если боковая грань перпендикулярна плоскости основания (см. рисунок), то высотой пирамиды будет высота этой грани (по теореме «Если прямая, лежащая в одной из двух перпендикулярных плоскостей, перпендикулярна к прямой их пересечения, то она перпендикулярна второй плоскости»).
5. Если две боковые грани перпендикулярны к плоскости основания, то высотой пирамиды является их общее боковое ребро.
Расстояния от основания высоты пирамиды
Расстояние от основания высоты пирамиды до бокового ребра - перпендикуляр, опущенный из точки О на это ребро (см. рисунок). Обратите внимание: , но на рисунке не должен быть прямым: углы при параллельном проектировании не сохраняются.
OF - расстояние от основания высоты до бокового ребра SE ;
ON - расстояние от основания высоты до боковой грани ASB (о это расстояние подробнее смотри ниже).

, где - угол между ребром SE и плоскостью основания.
Расстояние от основания высоты до боковой грани
Пусть , тогда по теореме о трех перпендикуляры. Следовательно, AB перпендикулярна к плоскости SOK . Отсюда, если , то ON перпендикулярна к плоскости ASB .
.
Пирамида называется правильной , если ее основанием является правильный многоугольник, а основание высоты совпадает с центром многоугольника. Осью правильной пирамиды называется прямая, содержащая ее высоту. Боковые ребра правильной пирамиды равны, боковые грани - равные равнобедренные треугольники. Высота боковой грани, проведенная из вершины пирамиды, называется апофемою . Она является биссектрисой и медианой боковой грани, поскольку та является равнобедренным треугольником.
Теорема. Боковая поверхность правильной пирамиды равна произведению півпериметра основания на апофему.
; ,
где Р - периметр основания, а - сторона основания, l - длина апофеми.
Правильная треугольная пирамида
В основании правильной треугольной пирамиды лежит равносторонний треугольник, который изображается произвольным треугольником (см. рисунок).

Центром является точка пересечения его биссектрис, которые одновременно являются высотами и медіанами. Медианы при параллельном проектировании изображаются медіанами. Поэтому строим две медианы основания. Точка их пересечения - основание высоты пирамиды. Изображаем высоту, а затем соединяем вершину пирамиды с вершинами основания. Получим боковые ребра.
На рисунке: - угол наклона бокового ребра к плоскости основания (одинаковый для всех ребер); - угол наклона боковой грани к плоскости основания (одинаковый для всех граней).
Пусть .
Тогда ; ; ;
; ; .
Следовательно, .
; .
Плоскость осевого сечения ASD является плоскостью симметрии правильной треугольной пирамиды.
Эта плоскость перпендикулярна к плоскости основания и плоскости грани BSC .
Интересно также отметить, что скрещивающиеся ребра пирамиды (SA и BC , SB и AC , SC и AB ) являются перпендикулярными. Если , то ON является расстоянием от основания высоты не только к анафеме, но и к боковой грани BSC .
.
Правильная четырехугольная пирамида
В основании правильной четырехугольной пирамиды лежит квадрат, который изображается произвольным параллелограммом. Его центром является точка пересечения диагоналей. Эта точка - основание высоты пирамиды.
Пусть сторона квадрата а (см. рисунок).
Тогда ;
;
;
;
.

Обратите внимание: , , то есть .
При параллельном проектировании сохраняется параллельность.
; .
Расстояние от основания высоты до боковой грани:
; .

Правильная шестиугольная пирамида
В основе правильной шестиугольной пирамиды лежит правильный шестиугольник (см. рисунок). Его центром является точка пересечения диагоналей. Эта точка - основание высоты пирамиды.
Тогда ;
Пусть сторона правильного шестиугольника а .
;
;

.
; .

Усеченная пирамида
Срезанной пирамидой называется многогранник, который останется, если от пирамиды отделить плоскостью, параллельной основе, пирамиду с той же вершиной.
Теорема. Плоскость, которая параллельна основе пирамиды и пересекает ее, отсекает подобную пирамиду.
Обратите внимание: чтобы правильно изобразить срезанную пирамиду, надо начинать с изображения исходной полной пирамиды (см. рисунок).

Основания усеченной пирамиды - подобные многоугольники. Боковые грани - трапеции. - высота усеченной пирамиды, - высота боковой грани, - угол наклона бокового ребра к плоскости основания (любой), - угол наклона боковой грани к плоскости нижнего основания.
Правильная усеченная пирамида - это усеченная пирамида, которую достали из правильной пирамиды.
Ее боковые ребра равны и наклонены к плоскости основания под одним и тем же углом. Ее боковые грани равны рівнобічній трапеции и наклонены к плоскости нижнего основания под одним и тем же углом. Высоты боковых граней пирамиды называются апофемами .
Боковая поверхность правильной усеченной пирамиды равна произведению половину суммы периметров оснований и апофеми.
, где P н и P - периметры соответствующих оснований, l - апофема.
На рисунках изображены фигуры, которые бывает очень полезным рассмотреть при решении задач на срезанную пирамиду.
;
.

;


- прямоугольная трапеция.
- высота усеченной пирамиды.
- высота боковой грани.

В случае, когда усеченная пирамида правильная, отрезки OD и являются радиусами описанной окружности, а OF и - радиусами вписанной окружности для нижней и верхней основы соответственно.

Правильные многогранники
Выпуклый многогранник называется правильным , если его грани являются правильными многогранниками с одним и тем же числом сторон и в каждой вершине многогранника совпадает одно и то же число ребер.
Существует пять типов правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.
1. У правильного тетраэдра грани - правильные треугольники; в каждой вершине совпадает по три ребра. Тетраэдр - треугольная пирамида, все ребра которой равны.
2. У куба все грани - квадраты; в каждой вершине совпадает по три ребра. Куб - прямоугольный параллелепипед с равными ребрами.
3. В октаэдра грани - правильные треугольники. В каждой его вершине совпадает по четыре ребра.
4. В додекаедра грани - правильные п"ятикутники. В каждой его вершине совпадает по три ребра.
5. В грани икосаэдра - правильные треугольники. В каждой его вершине совпадает по пять ребер.
На рисунках приведены примеры правильных многогранников с названиями.
error: