Причины и условия самовозгорания. Химическое самовозгорание веществ. Причины и профилактика. горение смесей газов и паров с воздухом

Наименование параметра Значение
Тема статьи: Самовозгорание.
Рубрика (тематическая категория) Образование

Самовозгорание представляет собой процесс низкотемпературного окисления дисперсных материалов, заканчивающийся тлением или пламен-ным горением . Склонность к самовозгоранию веществ определяется ком-плексом их физико-химических свойств : теплотой сгорания, теплоемкостью, теплопроводностью, удельной поверхностью, объёмной плотностью и условиями теплообмена с внешней средой.

Для развития процесса самовозгорания: решающее значение имеет возможность накопления в материале тепла, выделяющегося при окислении (или деятельности микроорганизмов). Чем лучше условия аккумуляции теп-ла, тем раньше при более низкой температуре начинается самовозгорание.

Процессы самовозгорания развиваются в материалах при довольно низ-кой температуре (до 250 о С ) в течение длительного времени. В таких услови-ях для поддержания процесса самовозгорания недостаточно тепла, выде-ляющегося при окислении внешней поверхностью. Обязательным условием является вовлечение в реакцию окисления или разложения всœей массы мате-риала. И чем больше масса, тем легче развивается в ней процессы самонагре-вания и самовозгорания. Увеличение температуры окружающей среды со-кращает время до самовозгорания.

Можно выделить два механизма самовозгорания :

Тепловое самовозгорание состоит в следующем. Многие дис-персные материалы взаимодействуют с кислородом воздуха уже при обыч-ной температуре. В условиях , благоприятствующих накоплению тепла в мас-се материала, происходит повышение температуры. Это в свою очередь по-вышает скорость реакций окисления, повышая при этом температуру и т. д. В итоге может произойти самовозгорание материала .

Тепловое самовозгорание – физико-химический процесс, скорость ко-торого зависит 1 ). от скорости химической реакции,2 ). поступления кислорода к реагирующей поверхности и от 3 ).интенсивности теплообмена материала с окружающей средой.

При хранении дисперсных материалов на воздухе кислород проникает вовнутрь материала между частицами. Попадая в поры, кислород адсорбируется в поверхностном слое, что вызывает повышение температуры. Наличие развитой поверхности твердого материала с адсорбированным на ней кислородом является необходимым условием для начала теплового самовозгорания.

Существенную роль в развитии процесса самовозгорания играют по-ристость и адсорбционная способность материала . Чем больше пор, тем больше развита поверхность контакта и адсорбция на ней кислорода. По этой причине наиболее склонны к самовозгоранию материалы с большей пористостью.

Саморазогрев массы материала неоднороден . Вследствие разных условий теплоотвода, а).центральная зона объёма нагревается быстрее, чем поверхность, и на начальной стадии самовозгорания характерно сохранение внешнего вида материала, хотя внутри происходит обугливание . Далее на обугленной поверхности развиваются процессы тления , которые могут перейти в пламенное горение . Поскольку промежуточным продуктом при самовозгорании большинства органических веществ является уголь , то главную роль играют закономерности самовозгорания угля.

Следует отметить, что значительную роль в самовозгорании угля игра-ет его способность адсорбировать пары воды из окружающего воздуха. Установлено, что при этом уголь может нагреваться до 65-70 о С . К примеру, при адсорбировании 0,01 г Н 2 О выделится 22,6 Дж тепловой энергии.

Ускорению процесса самовозгорания способствует А).накопление тепла, б).развитая поверхность, в).легкая воспламеняемость, то есть малая энергия активации, и г).повышение температуры. Вместе с тем, самовозгорание развивается и при наличии в веществе д).примеси.

К примеру, в случае если в аммиачной селитре (NH 4 NO 3) примесей нет, то ее пе-ревозка и хранение безопасны. Температура разложения лежит в пределах 200 о С . Но при малых добавках органики или частиц металлов начинается автокаталитическое разложение , и селитра самовозгорается при 110 о С . Считают, что автокатализ вызывают выделяющиеся СО 2 и водяной пар. Добавка масел в селитру также вызывает взрывчатое её разложение (в связи с этим её применяют для приготовления взрывчатки).

Большую роль в опасности самовозгорания !!! играет длительность периода до самовозгорания . У разных веществ она различна.

Микробиологическое самовозгорание. К микробиологическому са-мовозгоранию склонны, главным образом, материалы растительного происхождения. Οʜᴎ служат питательной средой для бактерий и грибов.

Возможности развития микробиологического процесса ограничены, так как температура самонагревания материала не должна превышать 75 о С . По-скольку при более высокой температуре микроорганизмы, как правило, по-гибают. Примерами микробиологического самовозгорания можно назвать обугливание пшеницы в буртах , самонагрев навозной кучи и т. п .

В самовозгорании угля могут участвовать и адсорбция, и микроорга-низмы (в начальной стадии), и примеси. Так, существовали теории, что при-чинами самовозгорания угля является сульфиды желœеза (FeS), карбонаты же-леза Fe(CO) 4 и др.
Размещено на реф.рф
Сегодня считают, что в основном влияют при-меси желœеза, независимо от вида его химических соединœений.

Основными показателями, характеризующими опасность самовозгора-ния веществ, являются рассмотренные нами в теме 4:

· температура самонагревания;

· температура тления;

· условия теплового самовозгорания;

· способность взрываться и гореть при контакте с водой, кислородом воздуха и другими окислителями .

Последний показатель качественно характеризует особую пожарную опасность веществ, называемую пирофорностью.

К пирофорным относятся вещества,имеющие температуру самовос-пламенения ниже температуры окружающей среды , в отличие от большинства веществ, которые самовоспламеняются только в результате нагрева извне. Само возгорающие вещества очень пожароопасны .

Самовозгорающие вещества можно разделить на три группы:

1. Самовозгорающиеся при соприкосновении с воздухом: фосфор, сер-нистые металлы, порошок магния, уголь, са­жа и др.
Размещено на реф.рф
К примеру, в трассирую-щих пулях, фейерверках используются самовозгорающиеся вещества.

2. Воспламеняющиеся при соприкосновении с водой - ϶ᴛᴏ щелочные металлы, их карбиды, и др.
Размещено на реф.рф
К примеру, карбид кальция, применяемый в аце-тиленовых генераторах. Негашеная известь не горит, но выделяющееся при её реакции с водой тепло может нагреть материалы до температуры само-воспламенения.

3. К третьей группе относятся органические соединœения, которые вос-пла­меняются при контакте с кислородом и другими окислителями (хлором, бромом, окислами азота); это масла . Сюда относятся и вещества, получаемые в результате эндотермических реакций, к примеру, ацетилен, которые при воздействии тепла или удара разлагаются с возможным возникновением взрыва.

Самовозгорание. - понятие и виды. Классификация и особенности категории "Самовозгорание." 2017, 2018.

Самовозгоранием называется процесс возникновения горения при отсутствии постороннего источника зажигания. Происходит это при резком увеличении скорости экзотермических реакций в определенном объеме вещества, когда скорость выделения тепла превышает скорость теплоотвода в окружающую среду. К самовозгорающимся относятся вещества, у которых температура самонагревания ниже температуры самовоспламенения.

Основное, что необходимо сделать в ходе осмотра места пожара при возникновении версии о самовозгорании, это установить:

Природу материала или материалов (вещества, смеси веществ), которые находились в очаговой зоне на момент пожара,

Объемы (геометрические размеры) и количества складированного вещества (материала);

Условия хранения (температура окружающей среды, упаковка, вентиляция и т.д.);

Предысторию объекта хранения (когда складирован, не было ли признаков самонагревания (дым, запах) и т. д.

В зависимости от первичного импульса, запускающего механизм саморазогрева материала, различают следующие виды самовозгорания:

Тепловое;

Химическое;

Микробиологическое.

Тепловое самовозгорание

Экзотермический процесс окисления материала кислородом воздуха может быть инициирован предварительным подогревом этого материала до определенной температуры. Происходить это может при контакте с нагретыми поверхностями или газовой средой в процессе изготовления материала, его хранения или эксплуатации.

При подозрении на тепловое самовозгорание, кроме вышеперечисленных сведений, необходимо выяснить:

Были ли источники дополнительного подогрева материала (печи, калориферы, трубы отопления, другие нагретые поверхности);

Какие температуры этих источников, масса, поверхность нагрева, длительность действия, расстояние до материала;

Имелись ли условия для аккумуляции тепла.

К тепловому самовозгоранию склонны, например, древесные опилки, стружка, джутовое волокно, бумага в кипах, мелкодисперсные органические материалы (мука, торф, концентрат горючих сланцев, технологическая сажа), некоторые разновидности минеральных ват и других утеплителей и т. д.

Самонагревание древесины начинается при температуре 130-150 °С, однако при длительном (в течение многих лет!) нагреве древесина может переходить в так называемое "пирофорное" состояние и загораться при температуре 90-110 °С.

Возможна ситуация, когда склонный с самовозгоранию материал, после нагрева в процессе производства (например, при сушке), складируется или транспортируется неохлажденным, в результате чего возникает самовозгорание. Характерным признаком самовозгорания при этом является расположение очага в объеме (в глубине материала), а не на его поверхности. Данное обстоятельство, если оно выявлено, обязательно должно быть отражено в протоколе осмотра.

Расположение очага в объеме материала, ближе к центру массива, где наилучшие условия для аккумуляции тепла, а теплопотери наименьшие, является важным квалификационным признаком процесса самовозгорания, причем не только теплового, но и микробиологического.

Самовозгораются отложения краски в окрасочных камерах и их системах вентиляции.

Возможно самовозгорание угля в кучах и штабелях. При подозрении на такого рода причину необходимо выяснить:

Марку складированного угля;

Размеры кучи или штабеля;

Возможное увлажнение до пожара;

Степень измельчения (кусковой, пыль).

Склонность того или иного вещества (материала) к тепловому самовозгоранию может быть установлена по справочным данным . В случае, если имеется неизвестное вещество (материал) или по нему отсутствуют справочные данные, необходимо отобрать негоревшую пробу данного вещества для экспериментального определения температуры самонагревания и условий теплового самовозгорания по ГОСТ 12.1.044-89. Требования к отбираемой пробе указаны в приложении 4. При известных габаритах складированного материала испытания позволят определить минимальную температуру среды и длительность нагрева, при которой может произойти самовозгорание данного материала. Эти результаты можно будет сравнить с фактическими данными по исследуемому пожару.

Химическое самовозгорание

Химическое самовозгорание является результатом взаимодействия двух веществ друг с другом или с окружающей средой (водой, кислородом воздуха), происходящего с выделением достаточного количества тепла.

Рассматривать эту версию имеет смысл, если установлено, что в помещении, где произошел пожар, имелись вещества, склонные к экзотермической реакции с водой, воздухом или друг с другом. Существенно и присутствие в зоне очага разрушенной тары, а также остатков хотя бы одного из веществ.

На воздухе самовозгораются, например, желтый и белый фосфор, щелочные металлы (литий, калий, натрий), карбиды щелочных металлов (во влажном воздухе разлагаются с выделением ацетилена). Вследствие окисления на воздухе самовозгораются металлические порошки и пудры (алюминия, цинка, кобальта и др.).

Склонны к самовозгоранию растительные и животные масла, скипидар и некоторые другие вещества, содержащие химически активные непредельные С-С связи. Натуральная олифа, которая изготавливается из льняного масла, еще более склонна к самовозгоранию, нежели льняное масло, т.к. в нее введены сиккативы, ускоряющие окисление и полимеризацию масла, что приводит к его высыханию.

Минеральные (нефтяного происхождения) масла склонны к самовозгоранию только загрязненные.

Необходимо иметь в виду, что самовозгорание масел и других жидкостей невозможно в сосуде или при их проливе в виде лужи или пленки на какую-либо поверхность. Самовозгораются только пропитанные жидкостью тряпки, вата, шерсть, опилки и другие пористые материалы, на развитой поверхности которых возможен хороший контакт масла с кислородом воздуха. Для самовозгорания нужны оптимальное количество масла на поверхности пористого материала (не много, но и не мало) и условия аккумуляции тепла. Ускоряют самовозгорание соли кобальта, марганца, свинца, некоторых других металлов.

Наименьшая температура, при которой наблюдалось самовозгорание такого рода, составляет 10-15 °С. Период индукции - от нескольких часов до нескольких дней.

При подозрении на самовозгорание масла и подобных материалов необходимо выяснить:

Тип, вид масла, жира;

Что могло быть пропитано, в каком количестве, сколько времени пролежало до пожара;

Наличие условий для аккумуляции тепла.

Химическое самовозгорание возможно и при контакте пары веществ (материалов), одно из которых является сильным окислителем, другое - легкоокисляемым веществом.

К первым относятся соли азотной кислоты (селитры), перманганат калия и натрия, хлораты, перхлораты, бихроматы, хромовый ангидрид, концентрированная серная (более 95 %) и азотная кислоты, перекись водорода, органические перекиси и т.д.

Ко вторым - жидкие органические вещества (двух- и трехатомные спирты, некоторые углеводороды) и мелкодисперсные твердые органические вещества (например, опилки, сахарный песок и пудра и т.д.), указанные выше порошки металлов.

При подозрении на химическое самовозгорание, связанное с экзотермическим взаимодействием двух веществ, необходимо в обязательном порядке затребовать сведения о веществах, которые могли находиться (храниться, транспортироваться) на объекте, где произошел пожар.

При осмотре места пожара необходимо:

а) исследовать окружающие конструкции и предметы для выявления зоны длительного низкотемпературного пиролиза. Как правило, при самовозгорании (химическом, в частности) выделяющегося тепла не хватает для обеспечения мгновенного развития пламенного горения. Процесс обычно на начальном этапе протекает в форме тления, в зонах, где имеются условия для аккумуляции тепла, и лишь через какое-то время переходит в пламенное горение. Поэтому надо пытаться выявить и зафиксировать подобные зоны тления;

б) отобрать пробы угля в целях установления температуры и длительности пиролиза (см. гл. 5). Это необходимо, в частности, для подтверждения режима горения в исследуемой зоне (тление или пламенное горение);

в) отобрать пробы для последующих инструментальных исследований в целях обнаружения в очаговой зоне остатков реагировавших между собой веществ.

Микробиологическое самовозгорание

Характерно для органических дисперсных и волокнистых материалов, внутри которых возможна жизнедеятельность микроорганизмов (сена, соломы, овощей, зерна, фрезерного торфа и др.).

При отработке версии о микробиологическом самовозгорании по возможности необходимо получить следующие данные:

а) влажность сена на момент пожара (известно, что для микробиологического самовозгорания влажность должна быть не менее 16 %);

б) время, прошедшее после закладки (опасность самовозгорания сохраняется до 3-4 месяцев; наиболее вероятно оно в течение 10-30 суток);

в) размеры стога сена (по теоретической теплофизической оценке они должны быть не менее 2×2×2 м; при меньших габаритах стог не способен загореться, т. к. слишком велики теплопотери в окружающую среду).

Важно также выяснить условия хранения и сушки сена. Возможно очаговое (так называемое "гнездовое") возникновение процесса в результате попадания в стог более увлажненного сена или увлажнения отдельных участков через дырявую крышу сенохранилища. "Пластовое" самовозгорание может начаться при миграции влаги в массе сена из-за перепада температур, например, при неравномерном обогреве или охлаждении - при этом в периферийных слоях, вблизи поверхности, образуется конденсационная влага.

Квалификационные признаки микробиологического самовозгорания, выявляемые при осмотре места пожара:

1. Очаг расположен в центре стога или массива другого, склонного к микробиологическому самовозгоранию материала, а не снаружи. Если копна сена имеет поверхностное обугливание (обгорание), а внутри нет следов горения, то это не самовозгорание, а горение, возникшее от внешнего источника открытого огня, искры и т. д.

2. Наличие неразвившихся очагов, в том числе в отдельных кипах. Они представляют собой локальные агломераты сена различной степени термодеструкции (см. рис. 6.4).

Рис. 6.4. Зоны, возникающие в сене при микробиологическом самовозгорании

Однако существует процесс возгорания ма­териалов без источника зажигания, т.е. само­ возгорание, которое может быть следующих ви­дов: тепловое, химическое и микробиологическое.

Тепловое самовозгорание выражается в ак­кумуляции материалом тепла, в процессе кото­рого происходит самонагревание материала. Температура самонагревания вещества или ма­териала является показателем его пожароопас­ное™. Для большинства горючих материалов этот показатель лежит в пределах от 80 до 150°С. Продолжительное тление до начала пламенно-

го горения является отличительной характери­ стикой процессов теплового самовозгорания, ко­торые обнаруживаются по длительному и устой­чивому запаху тлеющего материала.

Химическое самовозгорание сразу проявля­ется в пламенном горении, что характерно при соединении органических веществ с кислотами, растительными и техническими маслами. Мас­ла и жиры, в свою очередь, способны к самовоз­горанию в среде кислорода.

На практике чаще всего проявляются комбини­рованные процессы самовозгорания: тепловые и химические.

Динамика пожара

Оценивая динамику развития пожара, можно выделить несколько его основных фаз:

1-я фаза (до 10 минЛ - начальная стадия, включает переход возгорания в пожар за время примерно в 1-3 мин. и рост зоны горения в тече­ние 5-6 мин. При этом происходит преимуще­ственно линейное распространение огня вдоль горючих веществ и материалов, что сопровожда­ется обильным дымовыделением. На этой фазе очень важно обеспечить изоляцию помещения от поступления наружного воздуха, т.к. в некото­рых случаях в герметичном помещении наступа­ет самозатухание пожара.

2-я фаза - стадия объемного развития пожа­ ра, занимает по времени 30^40 мин. Характеризу­ется бурным процессом горения с переходом в объемное горение, процесс распространения пла­мени происходит дистанционно за счет передачи энергии горения на другие материалы.

Через 15-20 мин. происходит разрушение остек­ления, резко увеличивается приток кислорода, мак­симальных значений достигают температура (до 800-900°С) и скорость выгорания. Стабилизация пожара при максимальных его значениях происходит на 20-25 мин. и продолжается еще 20-30 мин. При этом выгорает основная масса горючих материалов.

3-я фаза - стадия затухания пожара, т.е. дого­рание в виде медленного тления, после чего по­жар прекращается.

Анализируя динамику развития пожара, воз­ можно сделать определенные выводы:

1. Технические системы пожарной безопас­ности (сигнализации и автоматического тушения пожара) должны сработать до достижения мак­симальной интенсивности горения, а лучше -

в начальной стадии пожара. Это позволит руково­дителю образовательного учреждения иметь запас времени для того, чтобы организовать мероприя­тия по защите людей.

2. Пожарные подразделения прибывают, как правило, через 10-15 мин. после вызова, т.е. через 15-20 мин. после возникновения пожара, когда он принимает объемную форму и максимальную ин­тенсивность.

Огнетушащие вещества

Существует классификация пожаров по харак­теристикам горючей среды, и она имеет важное практическое значение при выборе типов первич­ных средств пожаротушения:

Класс А - горение твердых веществ (древеси­на, бумага, текстиль, пластмассы);

Класс В - горение жидких веществ;

Класс С - горение газов;

Класс Д - горение металлов и металлосодер-жащих веществ;

Класс Е - горение электроустановок.

Обозначенные классы пожаров предполагают целесообразные способы их тушения. Так, на­пример, в зданиях и сооружениях применяются огнетушащие вещества.

Прекращение горения (способ тушения) осуще­ствляется на основе следующих известных прин­ципов:

"- охлаждение реагирующих веществ;

»-» изоляция реагирующих веществ от зоны го­рения;

»-* разбавление реагирующих веществ до него­рючих концентраций;

»-» химическое торможение реакции горения.

На практике обозначенные принципы пре­кращения горения обычно реализуются комп­лексно.

При тушении пожара условно можно выделить периоды его локализации и ликвидации.

Пожар считается локализованным, когда :

    Нет угрозы людям и животным;

    Нет угрозы взрывов и обрушения;

    Развитие пожара ограничено;

    Обеспечена возможность его ликвидации имеющимися силами и средствами.

Пожар считается ликвидированным, когда :

    Горение прекращено;

    Обеспечено предотвращение его возникновения.

Указанные признаки локализации и ликвидации пожара необходимо знать должностным лицам учреждений образования для принятия при пожа­ре правильных решений.

К основным огнетушащим веществам относятся:

    Вода и ее растворы;

    Химические и воздушно-механические пены;

Вода и ее растворы получила наибольшее применение из-за доступности, дешевизны и эффективности при доминирующем принци­пе охлаждения для прекращения горения. Но необходимо иметь в виду, что нельзя:

■* тушить водой электроустановки под напря­жением;

■» применять воду при тушении горящих неф­тепродуктов;

** использовать воду при тушении химических веществ, вступающих с ней в реакции.

Однако вода обладает высоким поверхностным натяжением, поэтому плохо смачивает твердые ве­щества, особенно волокнистые. Это свойство воды должно быть учтено при использовании на пожаре в образовательных учреждениях внутрен­него пожарного водопровода. Для снижения не­достатков воды как основного огнетушащего средства в нее добавляют различные присадки.

Порошковые огнетушащие составы имеют разнообразный механизм прекращения горения, высокую эффективность и способны прекращать горение практически любого класса. Это опре­деляет их широкое использование в огнетуши­телях. Но они имеют склонность к слёживанию, поэтому требуют в составе огнетушителей пе­риодического встряхивания. Могут использо­ваться и для тушения электроустановок под на­пряжением.

Диоксид углерода (СО 2) - твердая его фрак­ция при использовании в огнетушителях сразу переходит в газ минуя жидкую фазу. Реализует несколько механизмов прекращения горения, очень эффективен. Рекомендуется использовать для ту­шения электроустановок под напряжением, хотя способен прекратить горение почти всех горючих материалов, за исключением металлического на­трия и калия, магния и его сплавов.

Перечисленные огнетушащие вещества явля­ются основными при использовании в учрежде­ниях образования, хотя пожарные подразделения широко применяют и различные пены, обладаю­щие уникальными свойствами.

Проблема определения необходимого коли­ чества первичных средств пожаротушения про­ ста, но необходимо иметь в виду некоторые об­ стоятельства.

    Комплектование технологического оборудования огнетушителями осуществляется согласно требованиям паспортов на это оборудование или соответствующим правилам пожарной безопасности.

    Выбор типа и расчет необходимого количества огнетушителей рекомендуется производить в зависимости от их огнетушащей способности, предельной площади помещений, класса пожара горючих веществ.

    В общественных зданиях и сооружениях на каждом этаже должно размещаться не менее двух ручных огнетушителей.

    При наличии нескольких небольших помещений одной категории пожарной опасности количество необходимых огнетушителей определяется с учетом суммарной площади этих помещений.

Так «Правила пожарной безопасности в РФ» ППБ 01-03 рекомендуют для общественных зданий площадью 800 м 2 использовать или четыре порош­ковых огнетушителя марки ОП-5 или два ОП-10, или четыре ОУ-2, или два ОУ-5. Предпочтительнее, на наш взгляд, использовать огнетушители ОП-5 как наиболее эффективные по защищаемым площадям, с дополнительным размещением огнетушителей ОУ-2 (ОУ-5) в компьютерных классах, т.е. там, где. есть электроустановки под напряжением. Этот под­ход не снижает рекомендации «Правил пожарной безопасности в РФ», а лишь усиливает их, исходя из особенностей учреждений образования.

Горение – сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Приближенно можно описать природу горения как бурно идущее окисление.
Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны. К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому - детонацию.

Горение подразделяется на тепловое и цепное. В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях.

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации.

Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме, когда основные характеристики процесса – скорость реакции, мощность тепловыделения, температура и состав продуктов – не изменяются во времени, либо в периодическом режиме, когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Различают следующие виды горения: самовоспламенение, самовозгорание, вспышка, воспламенение, взрыв.

Самовоспламенение – горение, возникающее от внешнего нагревания вещества до определенной температуры без не посредственного соприкосновения горючего вещества с пламенем внешнего источника горения.

Самовозгорание – горение твердых веществ, возникающее от нагревания их под влиянием процессов, происходящих внутри самого вещества. Происходящие физические или химические процессы внутри вещества связаны с образованием тёпла, которое ускоряет процесс окисления, переходящий в горение открытым огнем.

Вспышка – быстрое, но, сравнительно со взрывом, кратко временное сгорание смеси паров горючего вещества с воздухом или кислородом, возникающее от местного повышения темпера туры, которое может быть вызвано электрической искрой или прикосновением к смеси пламени или накаленного тела. Температура, при которой происходит вспышка, называется температурой вспышки. Явление вспышки схоже с явлением взрыва, но, в отличие от последнего, оно происходит без сильного звука и не оказывает разрушительного действия.

Воспламенение – стойкое возгорание смеси паров и газов горючего вещества от местного повышения температуры, которое может быть вызвано прикосновением пламени или накаленного тела. Воспламенение может длиться до тех пор, пока не сгорит весь запас горючего вещества, причем парообразование при этом происходит за счет тепла, выделяющегося при сгорании.

Воспламенение отличается от вспышки своей продолжительностью. Кроме того, при вспышке тепловыделение в каждом участке достаточно для поджигания смежного участка уже готовой горючей смеси, но недостаточно для пополнения ее путем испарения новых количеств горючего; поэтому, истратив запас горючих паров, пламя гаснет и вспышка на этом кончается, пока снова не накопятся горючие пары и не получат местного перегрева. При воспламенении же парообразующее вещество бывает доведено до такой температуры, что теплоты сгорания накопившихся паров оказывается достаточно для восстановления запаса горючей смеси.

Взрыв – мгновенное сгорание или разложение вещества, сопровождающееся выделением огромного количества газов, которые мгновенно расширяются и вызывают резкое повышение давления в окружающей среде. При соприкосновении с воздухом: газообразные продукты разложения некоторых веществ обладают способностью воспламеняться, что не только приводит к разрушениям от действия взрывной волны, но и вызывает большие пожары.
Так же выделяют самораспространяющийся высокотемпературный синтез (СВС), – химический процесс, протекающий с выделением тепла в автоволновом режиме типа горения и приводящий к образованию твердых продуктов. СВС представляет собой режим протекания экзотермической реакции, в котором тепловыделение локализовано в слое и передается от слоя к слою путем теплопередачи.

Чтобы произошло возгорание, необходимы три фактора:

  1. тепло
  2. кислород
  3. горючее вещество (топливо)

Смысл вопроса в том, что только тогда, когда эти три составляющих налицо в надлежащей пропорции - может возникнуть пламя.

Существует так же беспламенное горение. В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени, возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора, например, окисление этанола на платиновой черни.

Пожар - это неконтролируемое горение вне специального очага.

1. Горючее вещество (топливо)
Горючие вещества (материалы) – вещества (материалы), способные к взаимодействию с окислителем (кислородом воздуха) в режиме горения. По горючести вещества (материалы) подразделяют на три группы:

    негорючие вещества и материалы не способные к самостоятельному горению на воздухе;

    трудногорючие вещества и материалы – способные гореть на воздухе при воздействии дополнительной энергии источника зажигания, но не способные самостоятельно гореть после его удаления;

    горючие вещества и материалы – способные самостоятельно гореть после воспламенения или самовоспламенения самовозгорания.

Горючие вещества (материалы) – понятие условное, так как в режимах, отличных от стандартной методики, негорючие и трудногорючие вещества и материалы нередко становятся горючими.
Среди горючих веществ имеются вещества (материалы) в различных агрегатном состоянии: газы, пары, жидкости, твёрдые вещества (материалы), аэрозоли. Практически все органические химические вещества относятся к горючим веществам. Среди неорганических химических веществ также имеются горючие вещества (водород, аммиак, гидриды, сульфиды, азиды, фосфиды, аммиакаты различных элементов).
Горючие вещества (материалы) характеризуются показателями пожарной опасности. Введением в состав этих веществ (материалов) различных добавок (промоторов, антипиренов, ингибиторов) можно изменять в ту или иную сторону показатели их пожарной опасности.

2. Окислитель
Окислитель является второй стороной треугольника горения. Обычно в качестве окислителя при горении выступает кислород воздуха, однако могут быть и другие окислители - окислы азота и т.п.
Критическим показателем для кислорода воздуха как окислителя, является его концентрация в воздушной среде закрытого судового помещения в объемных пределах выше 12-14%. Ниже этой концентрации горение абсолютного большинства горючих веществ не происходит. Однако некоторые горючие вещества способны гореть и при более низких концентрациях кислорода в окружающей газовоздушной среде.

3. Температура возгорания (тепло)
Есть много понятий, применяемых к температурам, при которых возможно возгорание. Главнейшие из них:
Температура вспышки - наименьшая температура, при которой вещество выделяет достаточно горючих для воспламенения паров, при воздействии открытым пламенем, но горение не продолжается.
Температура воспламенения - наименьшая температура, при которой вещество дает достаточно горючих испарений для возгорания и продолжения горения при приложении открытого пламени.
Примечание. Можно заметить, что разница между температурой вспышки и температурой горения в том, что в первом случае происходит мгновенная вспышка, а во втором температура должна быть достаточно высока, чтобы производить достаточно горючих паров для горения, независимо от источника возгорания.
Самовоспламенение - это быстрое самоускорение экзотермической химической реакции, приводящее к появлению яркого свечения - пламени. Самовоспламенение происходит в результате того, что при окислении материала кислородом воздуха образуется тепла больше, чем успевает отводиться за пределы реагирующей системы. Для жидких и газообразных горючих веществ это возникает при критических параметрах температуры и давления.

Важно полностью представлять, как обычно развивается пожар. Если исключить взрывы и вспышки, то процесс горения можно разделить на четыре следующих периода:

  1. период загорания
  2. развития пожара
  3. период горения
  4. период затухания

В этой связи показательно, что обычно пожар распространяется вверх очень быстро, в сторону - с относительно малой скоростью, а вниз - очень медленно.

Это можно проиллюстрировать так: Если горение возникло (треугольник замкнулся), действия по тушению пожара должны быть направлены на то, чтобы вывести показатели треугольника (хотя бы один) за переделы критических величин - разорвать треугольник горения. Это и есть теоретическая основа горения и тушения.

В зависимости от агрегатного состояния горючих компонентов (окислителя или горючего) различают три вида горения.

    Гомогенное горение – горение газов и парообразных горючих веществ в среде газообразного окислителя.

    Гетерогенное горение – горение жидких и твердых топлив (горючих веществ) в среде газообразного окислителя. Разновидностью гетерогенного горения является горение жидких капель топлива.

    Горение взрывчатых веществ и порохов .

По скорости распространения пламени горение подразделяется на дефлаграцию и детонацию. Дефлаграционное горение – это такой режим горения, при котором пламя распространяется с дозвуковой скоростью. При детонации пламя распространяется со сверхзвуковой скоростью, например, в воздухе – со скоростью более 300 м/с. Дозвуковое горение подразделяется на ламинарное и турбулентное. Скорость ламинарного горения зависит от состава смеси, начальных значений температуры и давления, а также от скорости химических превращений в пламени. Скорость распространения турбулентного пламени помимо указанных факторов зависит от скорости потока, степени и масштаба турбулентности.

Самовозгорание, возникновение горения в результате самонагревания горючих твердых материалов, вызванного самоускорением в них экзотермич. реакций. Самовозгорание происходит из-за того, что тепловыделение в ходе реакций больше теплоотвода в окружающую среду.

Начало самовозгорания характеризуется температурой самонагревания (Tсн), представляющей собой минимальную в условиях опыта температуру, при которой обнаруживается тепловыделение.

При достижении в процессе самонагревания определенной температуры, называемой температурой самовозгорания (Tсвоз), возникает горение материала, проявляющееся либо тлением, либо пламенным горением. В последнем случае Tсвоз адекватна температуре самовоспламенения (Tсв), под которым в пожарном деле понимают возникновение горения газов и жидкостей при нагревании до некоторой критической температуры. (см. Воспламенение в пожарном деле). В принципе самовозгорание и самовоспламенение по физической сущности сходны и различаются лишь видом горения, самовоспламенение возникает только в виде пламенного горения.

В случае самовоспламенения самонагревание (предвзрывной разогрев) развивается в пределах всего нескольких градусов и поэтому не учитывается при оценке пожаровзрывоопасности газов и жидкостей. При самовозгорании область самонагревания может достигать нескольких сотен градусов (например, для торфа от 70 до 225 °С). Вследствие этого явление самонагревания всегда учитывается при определении склонности твердых веществ к самовозгоранию.

Самовозгорание изучают путем термостатирования исследуемого материала при заданной температуре и установления зависимости между температурой, при которой возникает горение, размерами образца и временем его нагрева в термостате.

Процессы, происходящие при самовозгорании образцов горючего материала, изображены на рисунке. При температурах до Tсн (напр., T1) материал нагревается без изменений (тепловыделение отсутствует). При достижении Tсн в материале происходят экзотермические реакции. Последние в зависимости от условий накопления теплоты (масса материала, плотность упаковки его атомов и молекул, продолжительность процесса и т. д.) могут после периода небольшого самонагревания по исчерпании способных саморазогреваться компонентов материала завершиться охлаждением образца до начальной температуры термостата (кривая 1) либо продолжать самонагреваться вплоть до Tсвоз (кривая 2). Область между Тсн и Tсвоз потенциально пожароопасна, ниже Tсн-безопасна.

Возможность самовозгорание материала, находящегося в потенциально пожароопасной области, устанавливают с помощью уравнений:

где Tокр-температура окружающей среды, °С; l-определяющий размер (обычно толщина) материала; т-время, в течение которого может произойти самовозгорание; A1, n1 и А2, n2-коэффициент, определяемые для каждого материала по опытным данным.

По уравнению (1) при заданном l находят Tокр, при которой может возникнуть самовозгорание данного материала, по уравнению (2)-при известной Токр величину т. При температуре, ниже вычисленной Tокр, или при т, меньшем, чем время, рассчитанное по уравнению (2), самовозгорание не произойдет.

В зависимости от природы первоначального процесса, вызвавшего самонагревание материала, и значений Tсн различают самовозгорание:

  • химическое
  • микробиологическое
  • тепловое

К химическому самовозгоранию относятся экзотермическое взаимодействие веществ (например, при попадании концентрированной HNО3 на бумагу, древесные опилки и др.). Наиболее типичный и распространенный пример такого процесса - самовозгорание промасленной ветоши или иных волокнистых материалов с развитой поверхностью. Особенно опасны масла, содержащие соединения с ненасыщенными химическими связями и характеризующиеся высоким йодным числом (хлопковое, подсолнечное, джутовое и т.д.). К явлениям химического самовозгорания относится также загорание ряда веществ (например, мелкораздробленный Аl и Fe, гидриды Si, В и некоторых металлов, металлоорганических соединений - алюминийорганические и др.) при контакте их с воздухом в отсутствие нагрева. Способность веществ к самовозгоранию в таких условиях называют пирофорностью. Особенность пирофорных веществ заключается в том, что их Tсвоз (или Tсв) ниже комнатной температуры: - 200°С для SiH4, - 80 °С для А1(С2Н5)3. Для предупреждения химического самовозгорание порядок совместного хранения горючих веществ и материалов строго регламентирован.

Существует так же вид химических реакций веществ, который связан с взаимодействием с водой или влагой. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочноземельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.

Склонностью к микробиологическому самовозгоранию обладают горючие материалы, особенно увлажненные, служащие питательной средой для микроорганизмов, жизнедеятельность которых связана с выделением теплоты (торф, древесные опилки и др.). По этой причине большое число пожаров и взрывов происходит при хранении сельскохозяйственных продуктов (например, силос, увлажненное сено) в элеваторах. Для микробиологического и химического самовозгорания характерно то, что Tсн не превышает обычных значений Токр и может быть отрицательной. Материалы, имеющие Tсн выше комнатной температуры, способны к тепловому самовозгоранию.

Вообще склонностью ко всем видам самовозгорания обладают многие твердые материалы с развитой поверхностью (например, волокнистые), а также некоторые жидкие и плавящиеся вещества, содержащие в своем составе непредельные соединения, нанесенные на развитую (в том числе негорючую) поверхность. Расчет критических условий для химического, микробиологического и теплового самовозгорания осуществляется по уравнениям (1) и (2).

Из-за притяжения Земли при горении возникает конвекция (движение воздуха): нагретый воздух становится легче и устремляется вверх, а холодный снизу приходит ему на смену. Этот поток воздуха приводит к значительному градиенту температуры вдоль пламени.

Схематическое изображение пламени свечи с указанием температуры в его различных точках при горении в нормальных условиях

Поэтому пламя свечи в невесомости выглядит несколько иначе:

Жёлто-оранжевый цвет верхушки пламени в обычных условиях обусловлен свечением частичек сажи, уносимых вверх поднимающимся потоком горячего воздуха. Сажа – это микрочастицы, содержащие углерод, не успевший сгореть, т.е. превратиться в СО2. В невесомости пламя свечи меньше по размеру и не такое горячее, как обычно, т.к. нет достаточного притока свежего воздуха, содержащего кислород. Поэтому сажи очень мало, т.к. она не образуется при температуре ниже 1000 °С. Но, даже если бы её и было достаточно, и тогда из-за низкой температуры она светилась бы в инфракрасном диапазоне, а значит, цвет у пламени в невесомости всегда голубоватый.

Так же цвет пламени зависит от того, какие элементы «сгорают» в нём. Высокая температура пламени даёт возможность атомам перескакивать на некоторое время в более высокие энергетические состояния, а потом, возвращаясь в исходное состояние, излучать свет определённой частоты, которая соответствует структуре электронных оболочек данного элемента. Например, газовая горелка горит голубым пламенем из-за наличия CO, угарного газа, а жёлто-оранжевое пламя спички объясняют наличием солей натрия в древесине.

Список базовой литературы по этой тематике:

Основная литература
1. Я.Б. Зельдович, Г.И., Г.И. Баренблатт, В.Б. Либрович, Г.М. Махвиладзе. Математическая теория горения и взрыва. М.: Наука, 1980 – 478 с.
2. В.В. Померанцев, К.М. Арефьев, Д.Б. Ахмедов и др. Основы практической теории горения. Л.: Энергоатомиздат, Ленингр. отд-ие, 1986 – 309 с.
3. Гришин А.М. Математическое моделирование лесных пожаров и новые способы борьбы с ними. – Новосибирск: Наука, Сиб. Отд-ие, 1992. – 408 с.

Дополнительная литература
1. Концепция развития горения и взрыва как области научно-технического прогресса. Черноголовка: Территория, 2001.
2. Алексеев Б.В., Гришин А.М. Курс лекций по аэротермохимии. Часть 1. Элементы кинетической теории, термодинамики и химической кинетики. Часть 2. Элементы строгой теории коэффициентов переноса, теория переноса энергии излучением и основная система уравнений аэротермохимии. Томск: Изд-во Том. ун-та. 1971.
3. Волокитина А.В., Софронов М.А. Классификация и картографирование растительных горючих материалов. Новосибирск: Изд-во Наука, Сиб. отд-е РАН, 2002 – 306 с.

САМОВОЗГОРАНИЕ , возникновение горения в результате самонагревания горючих твердых материалов, вызванного самоускорением в них экзотермич. р-ций. Самовозгорание происходит из-за того, что тепловыделение в ходе р-ций больше тепло-отвода в окружающую среду .

Начало самовозгорания характеризуется т-рой самонагревания (T сн), представляющей собой минимальную в условиях опыта т-ру, при к-рой обнаруживается тепловыделение.

При достижении в процессе самонагревания определенной т-ры, наз. т-рой самовозгорания (T своз), возникает горение материала, проявляющееся либо тлением, либо пламенным горением . В последнем случае T своз адекватна т-ре самовоспламенения (T св), под к-рым в пожарном деле понимают возникновение горения газов и жидкостей при нагр. до нек-рой критич. т-ры. (см. Воспламенение в пожарном деле). В принципе самовозгорание и самовоспламенение по физ. сущности сходны и различаются лишь видом горения , самовоспламенение возникает только в виде пламенного горения .

В случае самовоспламенения самонагревание (предвзрыв-ной разогрев; см. Воспламенение) развивается в пределах всего неск. градусов и поэтому не учитывается при оценке пожаровзрывоопасности газов и жидкостей . При самовозгорании область самонагревания может достигать неск. сотен градусов (напр., для торфа от 70 до 225 °С). Вследствие этого явление самонагревания всегда учитывается при определении склонности твердых в-в к самовозгоранию.

С амовозгорание изучают путем термостатирования исследуемого материала при заданной т-ре и установления зависимости между т-рой, при к-рой возникает горение , размерами образца и временем его нагрева в термостате .

Процессы, происходящие при самовозгорании образцов горючего материала, изображены на рисунке. При т-рах до T сн (напр., T 1) материал нагревается без изменений (тепловыделение отсутствует). При достижении T сн в материале происходят экзотермич. р-ции. Последние в зависимости от условий накопления теплоты (масса материала, плотность упаковки его атомов и молекул , продолжительность процесса и т. д.) могут после периода небольшого самонагревания по исчерпании способных саморазогреваться компонентов материала завершиться охлаждением образца до начальной т-ры термостата (кривая 1) либо продолжать самонагреваться вплоть до T своз (кривая 2). Область между Т сн и T своз потенциально пожароопасна, ниже T сн -безопасна.

Изменение т-ры Т во временя т в термостатированных образцах горючего материала.

Возможность самовозгорания материала, находящегося в потенциально пожароопасной области, устанавливают с помощью ур-ний:

где T окр -т-ра окружающей среды , °С; l-определяющий размер (обычно толщина) материала; т-время, в течение к-рого может произойти самовозгорание; A 1 , n 1 и А 2 , n 2 -коэф., определяемые для каждого материала по опытным данным (см. табл.).

По ур-нию (1) при заданном l находят T окр, при к-рой может возникнуть самовозгорание данного материала, по ур-нию (2)-при известной Т окр величину т. При т-ре, ниже вычисленной T окр, или при т, меньшем, чем время, рассчитанное по ур-нию (2), самовозгорание не произойдет.

В зависимости от природы первоначального процесса, вызвавшего самонагревание материала, и значений T сн различают хим., микробиол. и тепловое самовозгорание.


К химическому самовозгоранию относятся экзотермич. взаимод. в-в (напр., при попадании конц. HN О 3 на бумагу , древесные опилки и др.). Наиб. типичный и распространенный пример такого процесса-самовозгорание промасленной ветоши или иных волокнистых материалов с развитой пов-стью. Особенно опасны масла , содержащие соед. с ненасыщ. хим. связями и характеризующиеся высоким йодным числом (хлопковое, подсолнечное, джутовое и т.д.).

К явлениям химического самовозгорания относится также загорание ряда в-в (напр., мелкораздробл. А1 и Fe, гидриды Si, В и нек-рых металлов , металлоорг. соед.-алюминийорганичес-кие и др.) при контакте их с воздухом в отсутствие нагрева. Способность в-в к самовозгоранию в таких условиях наз. пирофорностью. Особенность пирофорных в-в заключается в том, что их T своз (или T св) ниже комнатной т-ры: - 200°С для SiH 4 , - 80 °С для А1(С 2 Н 5) 3 . Для предупреждения химического самовозгорания порядок совместного хранения горючих в-в и материалов строго регламентирован.

Склонностью к микробиологическому самовозгоранию обладают горючие материалы, особенно увлажненные, служащие пи-тат. средой для микроорганизмов , жизнедеятельность к-рых связана с выделением теплоты (торф , древесные опилки и др.). По этой причине большое число пожаров и взрывов происходит при хранении сельскохозяйств. продуктов (напр., силос, увлажненное сено) в элеваторах. Для микробиологического и химического самовозгорания характерно то, что T сн не превышает-обычных значений Т окр и м.б. отрицательной. Материалы, имеющие T сн выше комнатной т-ры, способны к тепловому самовозгоранию.

Вообще склонностью ко всем видам самовозгорания обладают мн. твердые материалы с развитой пов-стью (напр., волокнистые), а также нек-рые жидкие и плавящиеся в-ва, содержащие в своем составе непредельные соед., нанесенные на развитую (в т.ч. негорючую) пов-сть. Расчет критич. условий для хим., микробиол. и теплового самовозгорания осуществляется по ур-ниям (1) и (2). Методы эксперим. определения Т сн и T своз и условий самовозгорания изложены в спец. стандарте.

Лит.: Таубкин С. М., Баратов А. Н., Никитина Н. С., Справочник по жароопасности твердых веществ и материалов, М., 1961; Пожарная опасность строительных материалов, под ред. А.Н. Баратова, М., 1988; Пожаровзрыво-опасность веществ и материалов и средства их тушения. Справочник, под ред. А.Н. Баратова, А.Я. Королъченко, кн. 1-2, М., 1990. А.Н. Баратов.

error: