Первообразная и интеграл свойства интеграла. Методы вычисления неопределенных интегралов. Интегрирование иррациональных функций

ИКТИБ ИТА ЮФУ

КУРС ЛЕКЦИЙ ПО МАТЕМАТИКЕ

Глава 5 Интегральное исчисление
функции одной переменной

Лекция 21 Первообразная, неопределенный интеграл

План лекции

Первообразная и неопределенный интеграл. Свойства неопределенного интеграла. Табличное интегрирование. Свойство инвариантности формул интегрирования. Подведение под знак дифференциала. Замена переменной в неопределенном интеграле. Интегрирование по частям. Разложение многочленов на множители. Разложение правильных рациональных дробей на простейшие. Интегрирование простейших и рациональных дробей. Интегрирование тригонометрических функций и некоторых иррациональных выражений.

Понятие первообразной и неопределенного интеграла

Что такое интеграл? Правда ли, что интегрирование – это действие, обратное дифференцированию. Давайте ответим на эти и другие вопросы.

Определение 1 . Первообразной для функции называется функция , такая что .

Итак, первообразная – это функция, производная от которой равна заданной функции. Заметим, что первообразная для заданной функции не определяется однозначно. Например, производная от функции равна функции . Следовательно, функция является первообразной для функции . Но ведь производная от функции также равна функции . Следовательно, функция также является первообразной для функции , как и функция , где - произвольная постоянная.

Теорема 1 . (Общий вид первообразных для заданной функции) Пусть функция является первообразной для функции . Тогда любая первообразная функции представляется в виде , где - произвольная постоянная. И наоборот, при любом функция является первообразной для функции .

Доказательство . Вторая часть теоремы очевидна, т. к. очевидно, . Теперь достаточно доказать, что, если производные двух функций равны, то эти функции отличаются на константу. По сути, достаточно доказать, что если производная от функции (разности упомянутых функций) равна 0, то это производная от константы. Но это действительно так. Возьмем любые две точки. Разность значений функции в этих точках по формуле конечных приращений Лагранжа равна производной в некоторой промежуточной точке, умноженной на разность аргументов (). Но ведь производная везде равна 0, следовательно, и приращение функции всегда равно 0, т. е. функции равна константе. Теорема доказана.

Определение 2 . Совокупность всех первообразных для функции называется неопределенным интегралом от функции и обозначается символом .

Итак, действительно, вычислить неопределенный интеграл – это означает выполнение действия, обратного вычислению производной. Кроме того, с учетом теоремы 1, справедлива формула для вычисления неопределенного интеграла , (1) где - одна из первообразных для функции , которая называется поды нтегральной функцией.

Мы уже знаем, что производная функции имеет многочисленные приложения. Речь в приложениях, конечно идет о значении производных в отдельных точках, т. е. о числах. Обратите внимание, что неопределенный интеграл – это совокупность функций. Поэтому непосредственное применение неопределенного интеграла весьма ограничено. В приложениях встречаются другие виды интегралов, где результатом является число, а технически вычисление сводится к нахождению первообразной функции. Поэтому очень важно научиться вычислять неопределенный интеграл.

1. От каких функций можно вычислить
неопределенный интеграл

Мы знаем, что можно вычислить производную любой элементарной функции, используя таблицу производных основных элементарных функций и правила вычисления производных (производная суммы, разности, произведения, частного, сложной функции).

Отсюда можно написать таблицу первообразных, прочитав таблицу производных «справа налево». Можно также сформулировать правила, соответствующие правилам вычисления производной. С суммой, разностью, вынесением числового множества правила дифференцирования и интегрирования идентичны. А вот с произведением, частным и вычислением производной сложной функции ситуация сложнее. Ведь производная, скажем, произведения не равна «произведению производных». Поэтому таблица первообразных и правила вычисления первообразных не позволяют найти первообразную любой элементарной функции. Существуют, так называемые, «не берущиеся» интегралы от элементарных функций. Например, казалось бы, простой интеграл нельзя в нашем понимании вычислить, т. к. среди элементарных функций нет функции, производная от которой равна . Первообразная для непрерывной функции существует всегда, но в данном случае она не среди элементарных. Такие функции называются специальными. Многие из них нужны в приложениях, и их изучают особо.

Итак, в отличии от вычисления производной функции, от нас не требуется умение вычислить неопределенный интеграл от любой элементарной функции. Мы изучим определенные типы элементарных функций, от которых должны научиться вычислять неопределенные интегралы.

Таблица простейших неопределенных интегралов

Давайте вспомним таблицу производных основных элементарных функций:

1) 2) 3) 4)
5) 6) 7) 8)
9) 10) 11) 12)

Во многом она порождает таблицу простейших неопределенных интегралов. Здесь есть и другие интегралы. Все они легко могут быть проверены вычислением производной от правых частей.

1) 2) 3)
4) 5) 6)
7) 8) 9)
10) 11) 12)
13) 14) 15)
| следующая лекция ==>
|

Мы убедились в том, что производная имеет многочисленные применения: производная - это скорость движения (или, обобщая, скорость протекания любого процесса); производная - это угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; производная помогает решать задачи на оптимизацию.

Но в реальной жизни приходится решать и обратные задачи: например, наряду с задачей об отыскании скорости по известному закону движения встречается и задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой u = tg. Найти закон движения.

Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = u"(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна tg. Нетрудно догадаться, что

Сразу заметим, что пример решен верно, но неполно. Мы получили, что На самом деле, задача имеет бесконечно много решений: любая функция вида произвольная константа, может служить законом движения, поскольку


Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например, при t=0. Если, скажем, s(0) = s 0 , то из равенства получаем s(0) = 0+С, т.е.S 0 = С. Теперь закон движения определен однозначно:
В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения: например, возведение в квадрат (х 2) и извлечение квадратного корня синус(sinх) и арксинус (аrcsin х) и т.д. Процесс отыскания производной по заданной функции называют дифференцированием, а обратную операцию, т.е. процесс отыскания функции по заданной производной - интегрированием.
Сам термин «производная» можно обосновать «по-житейски»: функция у - f(х) «производит на свет» новую функцию у"= f"(x) Функция у = f(х) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у"=f"(х), первичный образ, или, короче, первообразная.

Определение 1. Функцию у = F(х) называют первообразной для функции у = f(х) на заданном промежутке X, если для всех х из X выполняется равенство F"(х)=f(х).

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры:

1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для всех х справедливо равенство (х 2)" =2х.
2) функция у - х 3 является первообразной для функции у-Зх 2 , поскольку для всех х справедливо равенство (х 3)" = Зх 2 .
3) Функция у-sinх является первообразной для функции у=соsх, поскольку для всех х справедливо равенство (sinх)" =соsх.
4) Функция являетя первообразной для функции на промежутке поскольку для всех х > 0 справедливо равенство
Вообще, зная формулы для отыскания производных, нетрудно составить таблицу формул для отыскания первообразных.


Надеемся, вы поняли, как составлена эта таблица: производная функции, которая записана во втором столбце, равна той функции, которая записана в соответствующей строке первого столбца (проверьте, не поленитесь, это очень полезно). Например, для функции у = х 5 первообразной, как вы установите, служит функция (см. четвертую строку таблицы).

Замечания: 1. Ниже мы докажем теорему о том, что если у = F(х) - первообразная для функции у = f(х), то у функции у = f(х)бесконечно много первообразных и все они имеют вид у = F(х) + С. Поэтому правильней было бы во втором столбце таблицы всюду добавить слагаемое С, где С - произвольное действительное число.
2. Ради краткости иногда вместо фразы «функция у = F(х) является первообразной для функции y = f(x)», говорят F(х) - первообразная для f(x)».

2. Правила отыскания первообразных

При отыскании первообразных, как и при отыскании производных, используются не только формулы (они указаны в таблице на с. 196), но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило отыскания первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Обращаем ваше внимание на некоторую «легковесность» этой формулировки. На самом деле следовало бы сформулировать теорему: если функции у = f(х) и у=g{х) имеют на промежутке X первообразные, соответственно у-F(х) и у-G(х), то и сумма функций у = f(х)+g(х) имеет на промежутке X первообразную, причем этой первообразной является функция у = F(х)+G(х). Но обычно, формулируя правила (а не теоремы), оставляют только ключевые слова - так удобнее для применения правила на практике

Пример 2. Найти первообразную для функции у = 2х + соз х.

Решение. Первообразной для 2х служит х"; первообразной для созх служит sin х. Значит, первообразной для функции у=2х + соз х будет служить функция у = х 2 + sin х (и вообще любая функция вида У = х 1 + sinх + С).
Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило отыскания первообразных.

Правило 2. Постоянный множитель можно вынести за знак первообразной.

Пример 3.

Ре ш е н и е. а) Первообразной для sin х служит -соз х; значит, для функции у = 5 sin х первообразной будет функция у = -5соз х.

б) Первообразной для соз x служит sin x; значит, для функции первообразной будет функция
в) Первообразной для х 3 служит первообразной для х служит первообразной для функции у = 1 служит функция у = х. Используя первое и второе правила отыскания первообразных, получим, что первообразной для функции у = 12х 3 + 8х-1 служит функция
Замечание. Как известно, производная произведения не равна произведению производных (правило дифференцирования произведения более сложное) и производная частного не равна частному от производных. Поэтому нет и правил для отыскания первообразной от произведения или первообразной от частного двух функций. Будьте внимательны!
Получим еще одно правило отыскания первообразных. Мы знаем, что производная функции у = f(кх+m) вычисляется по формуле

Это правило порождает соответствующее правило отыскания первообразных.
Правило 3. Если у = F(х) - первообразная для функции у = f(х), то первообразной для функции у=f(кх+m) служит функция

В самом деле,


Это и означает, что является первообразной для функции у = f(кх+m).
Смысл третьего правила заключается в следующем. Если вы знаете, что первообразной для функции у = f(х) является функция у = F(х),а.вам нужно найти первообразную функции у = f(кх+m), то действуйте так: берите ту же самую функцию F, но вместо аргумента х подставьте выражение кх+m; кроме того, не забудьте перед знаком функции записать «поправочный множитель»
Пример 4. Найти первообразные для заданных функций:

Решение , а) Первообразной для sin х служит -соз х; значит, для функции у = sin2х первообразной будет функция
б) Первообразной для соз х служит sin х; значит, для функции первообразной будет функция

в) Первообразной для х 7 служит значит, для функции у=(4-5х) 7 первообразной будет функция

3. Неопределенный интеграл

Выше мы уже отмечали, что задача отыскания первообразной для заданной функции у = f(х)имеет не одно решение. Обсудим этот вопрос более детально.

Доказательство. 1. Пусть у = F(х) - первообразная для функции у = f(х) на промежутке X. Это значит, что для всех х из X выполняется равенство x"(х) = f(х). Найдем производную любой функции вида у = F(х)+С:
(F(х) +С) = F"(х) +С = f(x) +0 = f(x).

Итак, (F(х)+С) = f(х). Это значит, что у = F(х) +С является первообразной для функции у = f(х).
Таким образом, мы доказали, что если у функции у = f(х) есть первообразная у=F(х), то у функции {f = f(x) бесконечно много первообразных, например, любая функция вида у = F(х)+С является первообразной.
2. Докажем теперь, что указанным видом функций исчерпывается все множество первообразных.

Пусть у=F 1 (х) и у=F(х) - две первообразные для функции У = f(x)на промежутке X. Это значит, что для всех х из промежутка X выполняются соотношения: F^ (х) = f(х); F"(х) = f(х).

Рaсмотрим функцию у = F 1 (х) -.F(х) и найдем ее производную: (F, (х) -F(х))" = F[(х)-F(х) = f(х) - f(х) = 0.
Известно, что если производная функции на промежутке X тождественно равна нулю, то функция постоянна на промежутке X (см. теорему 3 из § 35). Значит, F 1 (х)-F(х) =С, т.е. Fх) = F(х)+С.

Теорема доказана.

Пример 5. Задан закон изменения скорости от времени v = -5sin2t. Найти закон движения s = s(t), если известно, что в момент времени t=0 координата точки равнялась числу 1,5 (т.е. s(t) = 1,5).

Решение. Так как скорость - производная координаты как функции от времени, то нам прежде всего нужно найти первообразную от скорости, т.е. первообразную для функции v = -5sin2t. Одной из таких первообразных является функция , а множество всех первообразных имеет вид:

Чтобы найти конкретное значение постоянной С, воспользуемся начальными условиями, согласно которым, s(0) = 1,5. Подставив в формулу (1) значения t=0, S = 1,5, получим:

Подставив найденное значение С в формулу (1), получим интересующий нас закон движения:

Определение 2. Если функция у = f(х) имеет на промежутке X первообразную у = F(х), то множество всех первообразных, т.е. множество функций вида у = F(х) + С, называют неопределенным интегралом от функции у = f(x) и обозначают:

(читают: «неопределенный интеграл эф от икс дэ икс»).
В следующем параграфе мы выясним, в чем состоит скрытый смысл указанного обозначения.
Опираясь на имеющуюся в этом параграфе таблицу первообразных, составим таблицу основных неопределенных интегралов:

Опираясь на приведенные выше три правила отыскания первообразных, мы можем сформулировать соответствующие правила интегрирования.

Правило 1. Интеграл от суммы функций равен сумме интегралов этих функций:

Правило 2. Постоянный множитель можно вынести за знак интеграла:

Правило 3. Если

Пример 6. Найти неопределенные интегралы:

Решение , а) Воспользовавшись первым и вторым правилами интегрирования, получим:


Теперь воспользуемся 3-й и 4-й формулами интегрирования:

В итоге получаем:

б) Воспользовавшись третьим правилом интегрирования и формулой 8, получим:


в) Для непосредственного нахождения заданного интеграла у нас нет ни соответствующей формулы, ни соответствующего правила. В подобных случаях иногда помогают предварительно выполненные тождественные преобразования выражения, содержащегося под знаком интеграла.

Воспользуемся тригонометрической формулой понижения степени:

Тогда последовательно находим:

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе

Основная задача дифференциального исчисления состоит в нахождении дифференциала данной функции или ее производной. Интегральное исчисление решает обратную задачу:по заданному дифференциалу, а, следовательно, и производной неизвестной функции F(x), требуется определить эту функцию. Иными словами, имея выражение

или соответственно

,

где f(x) – известная функция, нужно найти функцию F(x). Искомая функция F(x) называется при этом первообразной функцией по отношению к функции f(x) . Для простоты мы будем предполагать, что равенство (1) выполняется на некотором конечном или бесконечном промежутке.

Определение: Первообразной функциейдля данной функции f(x) на данном промежутке называется такая функция F(x), производная которой равна f(x) или дифференциал которой равен f(x)dx на рассматриваемом промежутке.

Например, одной из первообразных функций для функции будет , ибо . Первообразная функция не единственна, так как и т.д., и поэтому функции и т.п. также являются первообразными для функции . Следовательно, данная функция имеет бесчисленное множество первообразных.

В нашем примере каждые две первообразные отличались друг от друга на некоторое постоянное слагаемое. Покажем, что это будет иметь место и в общем случае.

Теорема: Две различные первообразные одной и той же функции, определенной на некотором промежутке, отличаются друг от друга на этом промежутке на постоянное слагаемое.

Доказательство: В самом деле, пусть f(x) – некоторая функция, определенная на промежутке , и F 1 (x), F 2 (x) – ее первообразные, т.е.

и .

Отсюда .

y=F 1 (x)
y=F 2 (x)
F 1 (x)
F 2 (x)
С
М 2
М 1
х
α
X
α
Y
Рис. 1.

Но если две функции имеют одинаковые производные, то эти функции отличаются друг от друга на постоянное слагаемое. Следовательно,

F 1 (x) - F 2 (x) = С,

где С – постоянная величина. Теорема доказана.

Рассмотрим геометрическую иллюстрацию. Если у = F 1 (x) и Y = F 2 (x)

Первообразные одной и той же функции f(x), то касательные к их графикам в точках с общей абсциссой х параллельны между собой (рис. 1):

tgα = = f(x) .

В таком случае расстояние между этими кривыми вдоль оси Оу остается постоянным: F 2 (x) – F 1 (x) = С, т.е. эти кривые в некотором смысле «параллельны» друг другу.

Следствие: Прибавляя к какой-либо первообразной функции f(x) , определенной на промежутке , все возможные постоянные С, мы получим все первообразные для функции f(x).

В самом деле, если F(x) есть первообразная функция для f(x), то функция F(x)+C , где С - любая постоянная, также будет первообразной функции f(x), так как .


С другой стороны, мы доказали, что каждая первообразная функции f(x) может быть получена из функции F(x) путем прибавления к ней надлежащим образом подобранного постоянного слагаемого С .

Следовательно, выражение F(x) + С , где , (2)

где F(x) – какая-либо первообразная для функции f(x) , исчерпывает всю совокупность первообразных для данной функции f(x) .

В дальнейшем мы будем предполагать, если явно не оговорено противное, что рассматриваемая функция f(x) определена и непрерывна на некотором конечном или бесконечном промежутке .

Введем теперь основное понятие интегрального исчисления – понятие неопределенного интеграла.

Определение: Общее выражение для всех первообразных данной непрерывной функции f(x) называется неопределенным интегралом от функции f(x) или от дифференциального выражения f(x)dx и обозначается символом .

При этом функция f(x) называется подынтегральной функцией, а выражение f(x)dx называется подынтегральным выражением.

Согласно определению неопределенного интеграла можно записать

, (3)

С 4
С 3
С 2
С 1
X
Y
Рис. 2.
где , постоянная С может принимать любое значение, и поэтому называется произвольной постоянной.

Пример. Как мы видели, для функции одной из первообразных является функция . Поэтому .

Геометрически неопределенный интеграл у=F(x)+C представляет собой семейство «параллельных» кривых (рис.2).

Первообразная функция и неопределённый интеграл

Факт 1. Интегрирование - действие, обратное дифференцированию, а именно, восстановление функции по известной производной этой функции. Восстановленная таким образом функция F (x ) называется первообразной для функции f (x ).

Определение 1. Функция F (x f (x ) на некотором промежутке X , если для всех значений x из этого промежутка выполняется равенство F "(x )=f (x ), то есть данная функция f (x ) является производной от первообразной функции F (x ). .

Например, функция F (x ) = sin x является первообразной для функции f (x ) = cos x на всей числовой прямой, так как при любом значении икса (sin x )" = (cos x ) .

Определение 2. Неопределённым интегралом функции f (x ) называется совокупность всех её первообразных . При этом употребляется запись

f (x )dx

,

где знак называется знаком интеграла, функция f (x ) – подынтегральной функцией, а f (x )dx – подынтегральным выражением.

Таким образом, если F (x ) – какая-нибудь первообразная для f (x ) , то

f (x )dx = F (x ) +C

где C - произвольная постоянная (константа).

Для понимания смысла множества первообразных функции как неопределённого интеграла уместна следующая аналогия. Пусть есть дверь (традиционная деревянная дверь). Её функция - "быть дверью". А из чего сделана дверь? Из дерева. Значит, множеством первообразных подынтегральной функции "быть дверью", то есть её неопределённым интегралом, является функция "быть деревом + С", где С - константа, которая в данном контексте может обозначать, например, породу дерева. Подобно тому, как дверь сделана из дерева при помощи некоторых инструментов, производная функции "сделана" из первообразной функции при помощи формулы, которую мы узнали, изучая производную .

Тогда таблица функций распространённых предметов и соответствующих им первообразных ("быть дверью" - "быть деревом", "быть ложкой" - "быть металлом" и др.) аналогична таблице основных неопределённых интегралов, которая будет приведена чуть ниже. В таблице неопределённых интегралов перечисляются распространённые функции с указанием первообразных, из которых "сделаны" эти функции. В части задач на нахождение неопределённого интеграла даны такие подынтегральные функции, которые без особых услилий могут быть проинтегрированы непосредственно, то есть по таблице неопределённых интегралов. В задачах посложнее подынтегральную функцию нужно предварительно преобразовать так, чтобы можно было использовать табличные интегралы.

Факт 2. Восстанавливая функцию как первообразную, мы должны учитывать произвольную постоянную (константу) C , а чтобы не писать список первообразной с различными константами от 1 до бесконечности, нужно записывать множество первообразных с произвольной константой C , например, так: 5x ³+С . Итак, произвольная постоянная (константа) входит в выражение первообразной, поскольку первообразная может быть функцией, например, 5x ³+4 или 5x ³+3 и при дифференцировании 4 или 3, или любая другая константа обращаются в нуль.

Поставим задачу интегрирования: для данной функции f (x ) найти такую функцию F (x ), производная которой равна f (x ).

Пример 1. Найти множество первообразных функции

Решение. Для данной функции первообразной является функция

Функция F (x ) называется первообразной для функции f (x ), если производная F (x ) равна f (x ), или, что одно и то же, дифференциал F (x ) равен f (x ) dx , т.е.

(2)

Следовательно, функция - первообразная для функции . Однако она не является единственной первообразной для . Ими служат также функции

где С – произвольная постоянная. В этом можно убедиться дифференцированием.

Таким образом, если для функции существует одна первообразная, то для неё существует бесконечное множество первообразных, отличающихся на постоянное слагаемое. Все первообразные для функции записываются в приведённом выше виде. Это вытекает из следующей теоремы.

Теорема (формальное изложение факта 2). Если F (x ) – первообразная для функции f (x ) на некотором промежутке Х , то любая другая первообразная для f (x ) на том же промежутке может быть представлена в виде F (x ) + C , где С – произвольная постоянная.

В следующем примере уже обращаемся к таблице интегралов, которая будет дана в параграфе 3, после свойств неопределённого интеграла. Делаем это до ознакомления со всей таблицей, чтобы была понятна суть вышеизложенного. А после таблицы и свойств будем пользоваться ими при интегрировании во всей полносте.

Пример 2. Найти множества первообразных функций:

Решение. Находим множества первообразных функций, из которых "сделаны" данные функции. При упоминании формул из таблицы интегралов пока просто примите, что там есть такие формулы, а полностью саму таблицу неопределённых интегралов мы изучим чуть дальше.

1) Применяя формулу (7) из таблицы интегралов при n = 3, получим

2) Используя формулу (10) из таблицы интегралов при n = 1/3, имеем

3) Так как

то по формуле (7) при n = -1/4 найдём

Под знаком интеграла пишут не саму функцию f , а её произведение на дифференциал dx . Это делается прежде всего для того, чтобы указать, по какой переменной ищется первообразная. Например,

, ;

здесь в обоих случаях подынтегральная функция равна , но её неопределённые интегралы в рассмотренных случаях оказываются различными. В первом случае эта функция рассматривается как функция от переменной x , а во втором - как функция от z .

Процесс нахождения неопределённого интеграла функции называется интегрированием этой функции.

Геометрический смысл неопределённого интеграла

Пусть требуется найти кривую y=F(x) и мы уже знаем,что тангенс угла наклона касательной в каждой её точке есть заданная функция f(x) абсциссы этой точки.

Согласно геометрическому смыслу производной, тангенс угла наклона касательной в данной точке кривой y=F(x) равен значению производной F"(x) . Значит, нужно найти такую функцию F(x) , для которой F"(x)=f(x) . Требуемая в задаче функция F(x) является первообразной от f(x) . Условию задачи удовлетворяет не одна кривая, а семейство кривых. y=F(x) - одна из таких кривых, а всякая другая кривая может быть получена из неё параллельным переносом вдоль оси Oy .

Назовём график первообразной функции от f(x) интегральной кривой. Если F"(x)=f(x) , то график функции y=F(x) есть интегральная кривая.

Факт 3. Неопределённый интеграл геометрически представлен семеством всех интегральных кривых , как на рисунке ниже. Удалённость каждой кривой от начала координат определяется произвольной постоянной (константой) интегрирования C .

Свойства неопределённого интеграла

Факт 4. Теорема 1. Производная неопределённого интеграла равна подынтегральной функции, а его дифференциал – подынтегральному выражению.

Факт 5. Теорема 2. Неопределённый интеграл от дифференциала функции f (x ) равен функции f (x ) с точностью до постоянного слагаемого , т.е.

(3)

Теоремы 1 и 2 показывают, что дифференцирование и интегрирование являются взаимно-обратными операциями.

Факт 6. Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла , т.е.

Функция F(x ) называется первообразной для функции f(x ) на заданном промежутке, если для всех x из этого промежутка выполняется равенство

F"(x ) = f (x ) .

Например, функция F(x) = х 2 f(x ) = 2х , так как

F"(x) = (х 2 )" = 2x = f(x).

Основное свойство первообразной

Если F(x) — первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С — произвольная постоянная.

Например.

Функция F(x) = х 2 + 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 + 1 )" = 2 x = f(x) ;

функция F(x) = х 2 - 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 1)" = 2x = f(x) ;

функция F(x) = х 2 - 3 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 3)" = 2 x = f(x) ;

любая функция F(x) = х 2 + С , где С — произвольная постоянная, и только такая функция, является первообразной для функции f(x ) = 2х .

Правила вычисления первообразных

  1. Если F(x) — первообразная для f(x) , а G(x) — первообразная для g(x) , то F(x) + G(x) — первообразная для f(x) + g(x) . Иными словами, первообразная суммы равна сумме первообразных .
  2. Если F(x) — первообразная для f(x) , и k — постоянная, то k ·F(x) — первообразная для k ·f(x) . Иными словами, постоянный множитель можно выносить за знак производной .
  3. Если F(x) — первообразная для f(x) , и k , b — постоянные, причём k ≠ 0 , то 1 / k · F(k x + b ) — первообразная для f (k x + b ) .

Неопределённый интеграл

Неопределённым интегралом от функции f(x) называется выражение F(x) + С , то есть совокупность всех первообразных данной функции f(x) . Обозначается неопределённый интеграл так:

f(x) dx = F(x) + С ,

f(x) — называют подынтегральной функцией ;

f(x) dx — называют подынтегральным выражением ;

x — называют переменной интегрирования ;

F(x) — одна из первообразных функции f(x) ;

С — произвольная постоянная.

Например, 2 x dx = х 2 + С , cos x dx = sin х + С и так далее.

Слово "интеграл" происходит от латинского слова integer , что означает "восстановленный". Считая неопределённый интеграл от 2 x , мы как бы восстанавливаем функцию х 2 , производная которой равна 2 x . Восстановление функции по её производной, или, что то же, отыскание неопределённого интеграла по данной подынтегральной функции, называется интегрированием этой функции. Интегрирование представляет собой операцию, обратную дифференцированию.Для того чтобы проверить, правильно ли выполнено интегрирование, достаточно продифференцировать результат и получить при этом подынтегральную функцию.

Основные свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции:
  2. ( f(x) dx )" = f(x) .

  3. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла:
  4. k · f(x) dx = k · f(x) dx .

  5. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:
  6. ( f(x) ± g(x ) ) dx = f(x) dx ± g(x ) dx .

  7. Если k , b — постоянные, причём k ≠ 0 , то
  8. f (k x + b ) dx = 1 / k · F(k x + b ) + С .

Таблица первообразных и неопределённых интегралов


f(x)
F(x) + C
f(x) dx = F(x) + С
I.
$$0$$
$$C$$
$$\int 0dx=C$$
II.
$$k$$
$$kx+C$$
$$\int kdx=kx+C$$
III.
$$x^n~(n\neq-1)$$
$$\frac{x^{n+1}}{n+1}+C$$
$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$
IV.
$$\frac{1}{x}$$
$$\ln |x|+C$$
$$\int\frac{dx}{x}=\ln |x|+C$$
V.
$$\sin x$$
$$-\cos x+C$$
$$\int\sin x~dx=-\cos x+C$$
VI.
$$\cos x$$
$$\sin x+C$$
$$\int\cos x~dx=\sin x+C$$
VII.
$$\frac{1}{\cos^2x}$$
$$\textrm{tg} ~x+C$$
$$\int\frac{dx}{\cos^2x}=\textrm{tg} ~x+C$$
VIII.
$$\frac{1}{\sin^2x}$$
$$-\textrm{ctg} ~x+C$$
$$\int\frac{dx}{\sin^2x}=-\textrm{ctg} ~x+C$$
IX.
$$e^x$$
$$e^x+C$$
$$\int e^xdx=e^x+C$$
X.
$$a^x$$
$$\frac{a^x}{\ln a}+C$$
$$\int a^xdx=\frac{a^x}{\ln a}+C$$
XI.
$$\frac{1}{\sqrt{1-x^2}}$$
$$\arcsin x +C$$
$$\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x +C$$
XII.
$$\frac{1}{\sqrt{a^2-x^2}}$$
$$\arcsin \frac{x}{a}+C$$
$$\int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}{a}+C$$
XIII.
$$\frac{1}{1+x^2}$$
$$\textrm{arctg} ~x+C$$
$$\int \frac{dx}{1+x^2}=\textrm{arctg} ~x+C$$
XIV.
$$\frac{1}{a^2+x^2}$$
$$\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
$$\int \frac{dx}{a^2+x^2}=\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
XV.
$$\frac{1}{\sqrt{a^2+x^2}}$$
$$\ln|x+\sqrt{a^2+x^2}|+C$$
$$\int\frac{dx}{\sqrt{a^2+x^2}}=\ln|x+\sqrt{a^2+x^2}|+C$$
XVI.
$$\frac{1}{x^2-a^2}~(a\neq0)$$
$$\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
$$\int\frac{dx}{x^2-a^2}=\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
XVII.
$$\textrm{tg} ~x$$
$$-\ln |\cos x|+C$$
$$\int \textrm{tg} ~x ~dx=-\ln |\cos x|+C$$
XVIII.
$$\textrm{ctg} ~x$$
$$\ln |\sin x|+C$$
$$\int \textrm{ctg} ~x ~dx=\ln |\sin x|+C$$
XIX.
$$ \frac{1}{\sin x} $$
$$\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
$$\int \frac{dx}{\sin x}=\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
XX.
$$ \frac{1}{\cos x} $$
$$\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
$$\int \frac{dx}{\cos x}=\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
Первообразные и неопределённые интегралы, приведённые в этой таблице, принято называть табличными первообразными и табличными интегралами .

Определённый интеграл

Пусть на промежутке [a ; b ] задана непрерывная функция y = f(x) , тогда определённым интегралом от a до b функции f(x) называется приращение первообразной F(x) этой функции, то есть

$$\int_{a}^{b}f(x)dx=F(x)|{_a^b} = ~~F(a)-F(b).$$

Числа a и b называются соответственно нижним и верхним пределами интегрирования.

Основные правила вычисления определённого интеграла

1. \(\int_{a}^{a}f(x)dx=0\);

2. \(\int_{a}^{b}f(x)dx=- \int_{b}^{a}f(x)dx\);

3. \(\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx,\) где k — постоянная;

4. \(\int_{a}^{b}(f(x) ± g(x))dx=\int_{a}^{b}f(x) dx±\int_{a}^{b}g(x) dx \);

5. \(\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx\);

6. \(\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\), где f(x) — четная функция;

7. \(\int_{-a}^{a}f(x)dx=0\), где f(x) — нечетная функция.

Замечание . Во всех случаях предполагается, что подынтегральные функции интегрируемые на числовых промежутках, границами которых являются пределы интегрирования.

Геометрический и физический смысл определённого интеграла

Геометрический смысл
определённого интеграла


Физический смысл
определённого интеграла



Площадь S криволинейной трапеции (фигура, ограниченная графиком непрерывной положительной на промежутке [a ; b ] функции f(x) , осью Ox и прямыми x=a , x=b ) вычисляется по формуле

$$S=\int_{a}^{b}f(x)dx.$$

Путь s , который преодолела материальная точка, двигаясь прямолинейно со скоростью, изменяющейся по закону v(t) , за промежуток времени a ; b ] , то площадь фигуры, ограниченной графиками этих функций и прямыми x = a , x = b , вычисляется по формуле

$$S=\int_{a}^{b}(f(x)-g(x))dx.$$


Например. Вычислим площадь фигуры, ограниченной линиями

y = x 2 и y = 2 - x .


Изобразим схематически графики данных функций и выделим другим цветом фигуру, площадь которой необходимо найти. Для нахождения пределов интегрирования решим уравнение:

x 2 = 2 - x ; x 2 + x - 2 = 0 ; x 1 = -2, x 2 = 1 .

$$S=\int_{-2}^{1}((2-x)-x^2)dx=$$

$$=\int_{-2}^{1}(2-x-x^2)dx=\left (2x-\frac{x^2}{2}-\frac{x^3}{2} \right)\bigm|{_{-2}^{~1}}=4\frac{1}{2}. $$

Объём тела вращения


Если тело получено в результате вращения около оси Ox криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на промежутке [a ; b ] функции y = f(x) и прямыми x = a и x = b , то его называют телом вращения .

Объём тела вращения вычисляется по формуле

$$V=\pi\int_{a}^{b}f^2(x)dx.$$

Если тело вращения получено в результате вращения фигуры, ограниченной сверху и снизу графиками функций y = f(x) и y = g(x) , соответственно, то

$$V=\pi\int_{a}^{b}(f^2(x)-g^2(x))dx.$$


Например. Вычислим объём конуса с радиусом r и высотой h .

Расположим конус в прямоугольной системе координат так, чтобы его ось совпадала с осью Ox , а центр основания располагался в начале координат. Вращение образующей AB определяет конус. Так как уравнение AB

$$\frac{x}{h}+\frac{y}{r}=1,$$

$$y=r-\frac{rx}{h}$$

и для объёма конуса имеем

$$V=\pi\int_{0}^{h}(r-\frac{rx}{h})^2dx=\pi r^2\int_{0}^{h}(1-\frac{x}{h})^2dx=-\pi r^2h\cdot \frac{(1-\frac{x}{h})^3}{3}|{_0^h}=-\pi r^2h\left (0-\frac{1}{3} \right)=\frac{\pi r^2h}{3}.$$

error: