Электролитами называют. Электролит. основных электролитов и их функции

Инструкция

Суть данной теории заключается в том, что при расплавлении (растворении в воде) практически все электролиты раскладываются на ионы, которые как положительно, так и отрицательно заряженные (что и называется электролитической диссоциацией). Под воздействием электрического тока отрицательные ( «-») к аноду (+), а положительно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит название «моляризация»).

Степень (a) электролитической диссоциации находится в зависимости от самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к общему числу введенных в раствор молекул (N). Получаете: a = n / N

Таким образом, сильные электролиты - вещества, полностью распадающиеся на ионы при растворении в воде. К сильным электролитам, как правило, вещества с сильнополярными или ионными связями: это соли, которые хорошо растворимы, сильные кислоты (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также сильные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В сильном электролите вещество, растворенное в нем, находится по большей части в виде ионов (анионов и катионов); молекул, которые недиссоциированные - практически нет.

Слабые электролиты - такие вещества, которые диссоциируют на ионы лишь частично. Слабые электролиты вместе с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе сильной концентрации ионов.

К слабым относятся:
- органические кислоты (почти все) (C2H5COOH, CH3COOH и пр.);
- некоторые из неорганических кислот (H2S, H2CO3 и пр.);
- практически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);
- вода.

Они практически не проводят электрический ток, или проводят, но плохо.

Обратите внимание

Хотя чистая вода проводит электрический ток очень плохо, она все-таки имеет измеримую электрическую проводимость, объясняемую тем, что вода немного диссоциирует на гидроксид-ионы и ионы водорода.

Полезный совет

Большинство электролитов – вещества агрессивные, поэтому при работе с ними будьте предельно осторожны и соблюдайте правила техники безопасности.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, однако, в растворенном или расплавленном виде становится проводником. Почему происходит такая резкая смена свойств? Дело в том, что молекулы электролита в растворах или расплавах диссоциируют на положительно заряженные и отрицательно заряженные ионы, благодаря чему эти вещества в таком агрегатном состоянии способны проводить электрический ток. Электролитическими свойствами обладает большинство солей, кислот, оснований.

Инструкция

Какие вещества относятся к сильным ? Такие вещества, в растворах или расплавах которых подвергаются практически 100% молекул, причем вне зависимости от концентрации раствора. В перечень входит абсолютное большинство растворимых щелочей, солей и некоторые кислоты, такие как соляная, бромистая, йодистая, азотная и т.д.

Чем отличаются от них электролиты средней силы? Тем, что они диссоциируют в гораздо меньшей степени (на ионы распадаются от 3% до 30% молекул). Классические представители таких электролитов – серная и ортофосфорная кислоты.

Отличные проводники электрического тока — золото, медь, железо, алюминий, сплавы. Наряду с ними существует большая группа веществ-неметаллов, расплавы и водные растворы которых тоже обладают свойством проводимости. Это сильные основания, кислоты, некоторые соли, получившие общее название "электролиты". Что такое ионная проводимость? Выясним, какое отношение имеют вещества-электролиты к этому распространенному явлению.

Какие частицы переносят заряды?

Мир вокруг полон различных проводников, а также изоляторов. Об этих свойствах тел и веществ известно с глубокой древности. Греческий математик Фалес провел опыт с янтарем (на греческом — «электрон»). Потерев его о шелк, ученый наблюдал явление притяжения волос, волокон шерсти. Позже стало известно, что янтарь является изолятором. В этом веществе нет частиц, которые могли бы переносить электрический заряд. Хорошие проводники — металлы. В их составе присутствуют атомы, положительные ионы и свободные, бесконечно малые отрицательные частицы — электроны. Именно они обеспечивают перенос зарядов, когда пропускают ток. Сильные электролиты в сухом виде не содержат свободных частиц. Но при растворении и расплавлении происходит разрушение кристаллической решетки, а также поляризация ковалентной связи.

Вода, неэлектролиты и электролиты. Что такое растворение?

Отдавая или присоединяя электроны, атомы металлических и неметаллических элементов превращаются в ионы. Между ними в кристаллической решетке существует достаточно прочная связь. Растворение или расплавление ионных соединений, например, хлорида натрия, приводит к ее разрушению. В полярных молекулах нет ни связанных, ни свободных ионов, они возникают при взаимодействии с водой. В 30-х годах XIX века М. Фарадей обнаружил, что растворы некоторых веществ проводят ток. Ученый ввел в науку такие важнейшие понятия:

  • ионы (заряженные частицы);
  • электролиты (проводники второго рода);
  • катод;
  • анод.

Есть соединения - сильные электролиты, кристаллические решетки которых полностью разрушаются с освобождением ионов.

Существуют нерастворимые вещества и те, что сохраняются в молекулярном виде, например, сахар, формальдегид. Такие соединения называются неэлектролитами. Для них не характерно образование заряженных частиц. Слабые электролиты (угольная и уксусная кислота, и ряд других веществ) содержат мало ионов.

Теория электролитической диссоциации

В своих работах шведский ученый С. Аррениус (1859-1927) опирался на выводы Фарадея. В дальнейшем уточнили положения его теории русские исследователи И. Каблуков и В. Кистяковский. Они выяснили, что при растворении и расплавлении образуют ионы не все вещества, а только электролиты. Что такое диссоциация по С. Аррениусу? Это и есть разрушение молекул, которое приводит к появлению заряженных частиц в растворах и расплавах. Основные теоретические положения С. Аррениуса:

  1. Основания, кислоты и соли в растворах находятся в диссоциированном виде.
  2. Обратимо распадаются на ионы сильные электролиты.
  3. Слабые образуют мало ионов.

Показателем вещества (ее часто выражают в процентах) является соотношение числа молекул, распавшихся на ионы, и общего количества частиц в растворе. Электролиты являются сильными, если значение этого показателя свыше 30%, у слабых — менее 3%.

Свойства электролитов

Теоретические выводы С. Аррениуса дополнили более поздние исследования физико-химических процессов в растворах и расплавах, проведенные русскими учеными. Получили объяснение свойства оснований и кислот. К первым относят соединения, в растворах которых из катионов можно обнаружить только ионы металла, анионами являются частицы OH - . Молекулы кислот распадаются на отрицательные ионы кислотного остатка и протоны водорода (H +). Движение ионов в растворе и расплаве — хаотичное. Рассмотрим результаты опыта, для которого потребуется собрать цепь, включить в нее и обыкновенную лампочку накаливания. Проверим проводимость растворов разных веществ: поваренной соли, уксусной кислоты и сахара (первые два - электролиты). Что такое электрическая цепь? Это источник тока и проводники, соединенные между собой. При замыкании цепи лампочка будет гореть ярче в растворе поваренной соли. Движение ионов приобретает упорядоченность. Анионы направляются к положительному электроду, а катионы — к отрицательному.

В этом процессе в уксусной кислоте участвует небольшое количество заряженных частиц. Сахар не является электролитом, не проводит ток. Между электродами в этом растворе окажется изолирующий слой, лампочка гореть не будет.

Химические взаимодействия между электролитами

При сливании растворов можно наблюдать, как ведут себя электролиты. Что такое ионные уравнения подобных реакций? Рассмотрим на примере химического взаимодействия между и нитратом натрия:

2NaNO 3 + BaCl 2 + = 2NaCl + Ba(NO 3) 2 .

Формулы электролитов запишем в ионном виде:

2Na + + 2NO 3- + Ba 2+ + 2Cl - = 2Na + + 2Cl - + Ba 2+ + 2NO 3- .

Взятые для реакции вещества - сильные электролиты. В этом случае состав ионов не меняется. Химическое взаимодействие между возможно в трех случаях:

1. Если один из продуктов является нерастворимым веществом.

Молекулярное уравнение: Na 2 SO 4 + BaCl 2 = BaSO 4 + 2NaCl.

Запишем состав электролитов в виде ионов:

2Na + + SO 4 2- + Ba 2+ + 2Cl - = BaSO 4(белый осадок) + 2Na + 2Cl - .

2. Одно из образовавшихся веществ — газ.

3. Среди продуктов реакции есть слабый электролит.

Вода — один из наиболее слабых электролитов

Химически чистая не проводит электрический ток. Но в ее составе есть небольшое количество заряженных частиц. Это протоны Н + и анионы ОН - . Диссоциации подвергается ничтожно малое число молекул воды. Существует величина — ионное произведение воды, которая является постоянной при температуре 25 °C. Она позволяет узнать концентрации Н + и ОН - . Преобладают ионы водорода в растворах кислот, гидроксид-анионов больше в щелочах. В нейтральных — совпадает количество Н + и ОН - . Среду растворов также характеризует водородный показатель (рН). Чем он выше, тем больше присутствует гидроксид-ионов. Среда является нейтральной при интервале рН близком к 6-7. В присутствии ионов Н + и ОН - изменяют свой цвет вещества-индикаторы: лакмус, фенолфталеин, метилоранж и другие.

Свойства растворов и расплавов электролитов находят широкое применение в промышленности, технике, сельском хозяйстве и медицине. Научное обоснование заложено в работах ряда выдающихся ученых, объяснивших поведение частиц, из которых состоят соли, кислоты и основания. В их растворах протекают многообразные реакции ионного обмена. Они используются во многих производственных процессах, в электрохимии, гальванике. Процессы в живых существах также происходят между ионами в растворах. Многие неметаллы и металлы, токсичные в виде атомов и молекул, незаменимы в виде заряженных частиц (натрий, калий, магний, хлор, фосфор и другие).

- (греч.). Жидкое тело, разлагаемое при помощи электрического (гальванического) тока. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЭЛЕКТРОЛИТ Жидкость, подверженная разложению посредством гальванического тока.… … Словарь иностранных слов русского языка

электролит - а, м. électrolyte m. < électro + гр. lytos разлагаемый. спец. Химическое вещество (в расплаве или растворе), способное разлагаться на составные части при прохождении через него электрического тока. Электролит аккумулятора. БАС 1. Швыряло… … Исторический словарь галлицизмов русского языка

электролит - Раствор, в котором при прохождении через него электрического тока происходит разложение вещества, которое приводит к появлению электрического тока. Электролит является основой аккумуляторов и батарей. [Гипертекстовый энциклопедический словарь по… … Справочник технического переводчика

ЭЛЕКТРОЛИТ - ЭЛЕКТРОЛИТ, раствор или расплав солей, способный проводить электрический ток и используемый для ЭЛЕКТРОЛИЗА (в ходе которого он разлагается). Ток в электролитах проводится заряженными частицами ИОНАМИ, а не электронами. Например, в свинцово… … Научно-технический энциклопедический словарь

ЭЛЕКТРОЛИТ - ЭЛЕКТРОЛИТ, электролита, муж. (от слова электрический и греч. lytos растворенный) (физ.). Раствор какого нибудь вещества, способного разлагаться на составные части при электролизе. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

электролит - сущ., кол во синонимов: 1 католит (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Электролит - Электролитами называют вещества, растворы и сплавыкоторых с другими веществами электролитически проводят гальваническийток. Признаком электролитической проводимости в отличие от металлическойдолжно считать возможность наблюдать химическое… … Энциклопедия Брокгауза и Ефрона

электролит - – вещество, водный раствор или расплав которого проводит электрический ток. Общая химия: учебник / А. В. Жолнин … Химические термины

ЭЛЕКТРОЛИТ - вещество, водный раствор или расплав которого проводит электрический ток (см.), образующимися в результате электролитической (см.). Этим Э., называемые также (см.) второго рода, отличаются от металлов (проводников первого рода), в которых перенос … Большая политехническая энциклопедия

Книги

  • , Горичев Игорь Георгиевич , Атанасян Т. К. , Якушева Е. А. Категория: Разное Издатель: Прометей , Производитель: Прометей , Купить за 483 грн (только Украина)
  • Неорганическая химия. Часть I. Поверхностные явления на границе оксид/электролит в кислых средах , Горичев Игорь Георгиевич , Атанасян Т. К. , Якушева Е. А. , В данном пособии детально рассматриваются особенности кинетики растворения оксидов кобальта в кислых средах, адсорбция оксидов кобальта, причины возникновения двойного электрического слоя на… Категория: Химические науки Издатель: Прометей , Купить за 377 руб
  • Неорганическая химия Часть I Поверхностные явления на границе оксид электролит в кислых средах Учебное пособие ,

Электролиты - растворы, содержащие большую концентрацию ионов, обеспечивающих прохождение электрического тока. Как правило, это водные растворы солей, кислот и щелочей .

В организме человека и животных электролиты играют важную роль: к примеру, электролиты крови с ионами железа транспортируют кислород в ткани; электролиты с ионами калия и натрия регулируют водно-солевой баланс организма, работу кишечника и сердца.

Свойства

Чистая вода, безводные соли, кислоты, щелочи ток не проводят. В растворах же вещества распадаются на ионы и проводят ток. Именно поэтому электролиты называют проводниками второго порядка (в отличие от металлов). Электролитами могут быть также расплавы и некоторые кристаллы, в частности диоксид циркония и иодид серебра.

Главное свойство электролитов - способность к электролитической диссоциации, то есть к распаду молекул при взаимодействии с молекулами воды (или других растворителей) на заряженные ионы.

По типу ионов, образующихся в растворе, различают электролит щелочной (электропроводимость обусловлена ионами металлов и ОН-), солевой и кислотный (с ионами Н+ и остатками основания кислоты).

Для количественной характеристики способности электролита к диссоциации введен параметр «степень диссоциации». Эта величина отражает процент молекул, подвергшихся распаду. Она зависит от:
самого вещества;
растворителя;
концентрации вещества;
температуры.

Электролиты делят на сильные и слабые. Чем лучше реагент растворяется (распадается на ионы), тем сильнее электролит, тем лучше он проводит ток. К сильным электролитам относятся щелочи, сильные кислоты и растворимые соли.

Для электролитов, использующихся в аккумуляторах, очень важен такой параметр, как плотность. От нее зависят условия эксплуатации аккумулятора, его емкость и срок службы. Определяют плотность с помощью ареометров .

Меры предосторожности при работе с электролитами

Самые популярные электролиты, это раствор концентрированной серной кислоты и щелочи - чаще всего гидроксиды калия, натрия, лития. Все они вызывают химические ожоги кожи и слизистых, очень опасные ожоги глаз. Именно поэтому все работы с такими электролитами нужно производить в отдельном, хорошо вентилируемом помещении, используя средства защиты: одежду, маски, очки, резиновые перчатки.
Рядом с помещением, где проводятся работы с электролитами, должна храниться аптечка с набором нейтрализующих средств и кран с водой.
Кислотные ожоги нейтрализуются раствором соды (1 ч.л. на 1 ст. воды).
Ожоги щелочью нейтрализуют раствором борной кислоты (1 ч.л. на 1 ст. воды).
Для промывания глаз нейтрализующие растворы должны быть в два раза слабее.
Поврежденные участки кожи сначала промывают нейтрализатором, а потом мылом и водой.
Если электролит пролили, его собирают опилками, потом промывают нейтрализатором и вытирают насухо.

При работе с электролитом следует выполнять все требования техники безопасности. Например, кислоту наливают в воду (а не наоборот!) не вручную, а с помощью приспособлений. Куски твердой щелочи в воду опускают не руками, а щипцами или ложками. Нельзя работать в одном помещении с аккумуляторами на разнотипных электролитах, и хранить их вместе тоже запрещается.

Некоторые работы требуют «кипения» электролита. При этом выделяется водород - горючий и взрывоопасный газ. В таких помещениях должна использоваться взрывобезопасная электропроводка и электроприборы, запрещается курение и любые работы с открытым огнем.

Хранят электролиты в пластиковых емкостях. Для работы подходит стеклянная, керамическая, фарфоровая посуда и инструменты.

В следующей статье расскажем подробнее о видах и применении электролита.

Электролиты - это вещества, растворы или расплавы которых проводят электрический ток. К электролитам относятся кислоты, основания и соли. Вещества, не проводящие электрического тока в растворенном или расплавленном состоянии, называют неэлектролитами. К ним относятся многие органические вещества, например сахара, и др. Способность растворов электролитов проводить электрический ток объясняют тем, что молекулы электролитов при растворении распадаются на электрически положительно и отрицательно заряженные частицы - ионы. Величина заряда иона численно равна валентности атома или группы атомов, образующих ион. Ионы отличаются от атомов и молекул не только наличием электрических зарядов, но и другими свойствами, например ионы не имеют ни запаха, ни цвета, ни других свойств молекул хлора. Положительно заряженные ионы называют катионами, отрицательно заряженные-анионами. Катионы образуют водорода Н + , металлов: К + , Na + , Са 2+ , Fe 3+ и некоторые группы атомов, например группа аммония NH + 4 ; анионы образуют атомы и группы атомов, являющиеся кислотными остатками, например Cl - , NO - 3 , SO 2- 4 , CO 2- 3 .

Распад молекул электролитов на ионы называется электролитической диссоциацией, или ионизацией, и представляет собой обратимый процесс, т. е. в растворе может наступать состояние равновесия, при котором сколько молекул электролитов распадается на ионы, столько их вновь образуется из ионов. Диссоциация электролитов на ионы может быть представлена общим уравнением: , где KmAn - недиссоциированная молекула, К z+ 1 - катион, несущий z 1 положительных зарядов, А z- 2 - анион, имеющий z 2 отрицательных зарядов, m и n - число катионов и анионов, образующихся при диссоциации одной молекулы электролита. Например, .

Число положительных и отрицательных ионов в растворе может быть разным, но суммарный заряд катионов всегда равен суммарному заряду анионов, поэтому раствор в целом электронейтрален.

Сильные электролиты практически полностью диссоциируют на ионы при любых концентрациях их в растворе. К ним относятся сильные кислота (см.), сильные основания и почти все соли (см.). Слабые электролиты, к которым относятся слабые кислоты и основания и некоторые соли, например сулема HgCl 2 , диссоциируют лишь частично; степень их диссоциации, т. е. доля молекул, распавшихся на ионы, возрастает с уменьшением концентрации раствора.

Мерой способности электролитов распадаться на ионы в растворах может служить константа электролитической диссоциации (константа ионизации), равная
где в квадратных скобках показаны концентрации соответствующих частиц в растворе.

При пропускании через раствор электролита постоянного электрического тока катионы перемещаются к отрицательно заряженному электроду - катоду, анионы передвигаются к положительному электроду - аноду, где отдают свои заряды, превращаясь в электронейтральные атомы или молекулы (катионы получают электроны от катода, а анионы отдают электроны на аноде). Так как процесс присоединения электронов к веществу является восстановлением, а процесс отдачи электронов веществом - окислением, то при пропускании электрического тока через раствор электролита на катоде происходит восстановление катионов, а на аноде-окисление анионов. Этот окислительно-восстановительный процесс называют электролизом.

Электролиты являются непременной составной частью жидкостей и плотных тканей организмов. В физиологических и биохимических процессах большую роль играют такие неорганические ионы, как Н + , Na + , К + , Са 2+ , Mg 2+ , ОН - , Cl - , НСО - 3 , H 2 РО - 4 , SO 2- 4 (см. Минеральный обмен). Ионы Н + и ОН - в организме человека находятся в очень малых концентрациях, но их роль в жизненных процессах огромна (см. Кислотно-щелочное равновесие). Концентрация ионов Na + и Cl - значительно превосходит таковую всех других неорганических ионов вместе взятых. См. также Буферные растворы, Иониты.

Электролиты - вещества, растворы или расплавы которых проводят электрический ток. Типичными электролитами являются соли, кислоты и основания.

Согласно теории электролитической диссоциации Аррениуса молекулы электролитов в растворах самопроизвольно распадаются на положительно и отрицательно заряженные частицы - ионы. Положительно заряженные ионы называют катионами, отрицательно заряженные - анионами. Величина заряда иона определяется валентностью (см.) атома или группы атомов, образующих данный ион. Катионы образуют обычно атомы металлов, например К+, Na+, Са2+, Mg3+, Fe3+, и некоторые группы других атомов (например, группа аммония NH 4); анионы, как правило, образуются атомами и группами атомов, являющихся кислотным остатками, например Cl-, J-, Br-, S2-, NO 3 -, CO 3 , SO 4 , PO 4 . Каждая молекула электронейтральна, поэтому число элементарных положительных зарядов катионов равно числу элементарных отрицательных зарядов анионов, образующихся при диссоциации молекулы. Наличием ионов объясняется способность растворов электролитов проводить электрический ток. Поэтому растворы электролитов называют ионными проводниками, или проводниками второго рода.

Диссоциация молекул электролитов на ионы может быть представлена следующим общим уравнением:

где - недиссоциированная молекула, - катион, несущий n1 положительных зарядов, - анион, имеющий n2 отрицательных зарядов, р и q - число катионов и анионов, входящих в состав молекулы электролита. Так, например, диссоциация серной кислоты и гидрата окиси аммония выражается уравнениями:

Количество ионов, содержащихся в растворе, принято измерять в грамм-ионах на 1 л раствора. Грамм-ион - масса ионов данного вида, выраженная в граммах и численно равная формульному весу иона. Формульный вес находят суммированием атомных весов атомов, образующих данный ион. Так, например, формульный вес ионов SO 4 -равен: 32,06+4-16,00=96,06.

Электролиты подразделяют на низкомолекулярные, высокомолекулярные (полиэлектролиты) и коллоидные. Примерами низкомолекулярных электролитов, или просто электролитов, могут служить обычные низкомолекулярные кислоты, основания и соли, которые в свою очередь принято делить на слабые и сильные электролиты. Слабые электролиты не полностью диссоциируют на ионы, вследствие чего в растворе устанавливается динамическое равновесие между ионами и недиссоциированными молекулами электролитов (уравнение 1). К числу слабых электролитов относятся слабые кислоты, слабые основания и некоторые соли, например сулема HgCl 2 . Количественно процесс диссоциации может быть охарактеризован степенью электролитической диссоциации (степенью ионизации) α, изотоническим коэффициентом i и константой электролитической диссоциации (константой ионизации) К. Степенью электролитической диссоциации α называют ту долю молекул электролитов, которая распадается на ионы в данном растворе. Величина а, измеряемая в долях единицы или в %, зависит от природы электролита и растворителя: она уменьшается с увеличением концентрации раствора и обычно слегка изменяется (возрастает или уменьшается) с увеличением температуры; она также уменьшается при введении в раствор данного электролита более сильного электролита, образующего одноименные ноны (например, степень электролитической диссоциации уксусной кислоты СН 3 СООН уменьшается при добавлении к ее раствору соляной кислоты HCl или ацетата натрия CH 3 COONa).

Изотонический коэффициент, или коэффициент Вант-Гоффа, i равен отношению суммы числа ионов и непродиссоциировавших молекул электролита к числу его молекул, взятых для приготовления раствора. Экспериментально i определяется путем измерения осмотического давления, понижения температуры замерзания раствора (см. Криометрия) и некоторых других физических свойств растворов. Величины i и α взаимосвязаны уравнением

где n - число ионов, образующихся при диссоциации одной молекулы данного электролита.

Константа электролитической диссоциации К представляет собой константу равновесия. Если электролит диссоциирует на ионы по уравнению (1), то

где, и - концентрации в растворе катионов и анионов (в г-ион/л) и недиссоциированных молекул (в моль/л) соответственно. Уравнение (3) является математическим выражением закона действующих масс в применении к процессу электролитической диссоциации. Чем больше К, тем электролит лучше распадается на ионы. Для данного электролита К зависит от температуры (обычно с увеличением температуры возрастает) и, в отличие от а, не зависит от концентрации раствора.

Если молекула слабого электролита может диссоциировать не на два, а на большее число ионов, то диссоциация протекает по стадиям (ступенчатая диссоциация). Например, слабая угольная кислота H 2 СO 3 в водных растворах диссоциирует в две ступени:

При этом константа диссоциации 1-й ступени значительно превышает таковую 2-й ступени.

Сильные электролиты согласно теории Дебая - Хюккеля в растворах полностью диссоциированы на ионы. Примерами этих электролитов могут служить сильные кислоты, сильные основания и почти все растворимые в воде соли. Вследствие полной диссоциации сильных электролитов в их растворах содержится огромное число ионов, расстояния между которыми таковы, что между разноименно заряженными ионами проявляются силы электростатического притяжения, благодаря чему каждый ион окружен ионами противоположного заряда (ионная атмосфера). Наличие ионной атмосферы снижает химическую и физиологическую активность ионов, их подвижность в электрическом поле и другие свойства ионов. Электростатическое притяжение между разноименно заряженными ионами возрастает с увеличением ионной силы раствора, равной полусумме произведений концентрации С каждого иона на квадрат его валентности Z:

Так, например, ионная сила 0,01 молярного раствора MgSO 4 равна

Растворы сильных электролитов независимо от их природы при одинаковой ионной силе (не превышающей, однако, 0,1) обладают одинаковой ионной активностью. Ионная сила крови человека не превышает 0,15. Для количественного описания свойств растворов сильных электролитов была введена величина, называемая активностью а, формально заменяющая концентрацию в уравнениях, вытекающих из закона действующих масс, например в уравнении (1). Активность а, имеющая размерность концентрации, связана с концентрацией уравнением

где f - коэффициент активности, показывающий, какую долю действительной концентрации данных ионов в растворе составляет эффективная их концентрация или активность. С уменьшением концентрации раствора f возрастает и в очень разбавленных растворах становится равной 1; в последнем случае а=С.

Низкомолекулярные электролиты являются непременной составной частью жидкостей и плотных тканей организмов. Из ионов низкомолекулярных электролитов в физиологических и биохимических процессах большую роль играют катионы Н+, Na+, Mg2+, Са2+ и анионы ОН-, Cl-, НСO 3 , H 2 РO 4 , НРO 4 , SO 4 (см. Минеральный обмен). Ионы Н + и ОН- в организмах, в том числе и в организме человека, находятся в очень малых концентрациях, но роль их в жизненных процессах огромна (см. Кислотно-щелочное равновесие). Концентрации Na+ и Cl- значительно превосходят концентрацию всех других ионов, вместе взятых.

Для живых организмов в высшей степени характерен так называе антагонизм ионов - способность ионов, находящихся в растворе, взаимно снижать присущее каждому из них действие. Установлено, например, что ионы Na+ в той концентрации, в которой они находятся в крови, ядовиты для многих изолированных органов животных. Однако ядовитость Na+ подавляется при добавлении к содержащему их раствору в соответствующих концентрациях ионов К+ и Са2 + . Таким образом, ионы К+ и Са2+ являются антагонистами ионов Na+. Растворы, в которых вредное действие каких-либо ионов устранено действием ионов антагонистов, называются эквилибрированными растворами. Антагонизм ионов обнаружен при действии их на самые различные физиологические и биохимические процессы.

Полиэлектролитами называют высокомолекулярные электролиты; примерами их являются белки, нуклеиновые кислоты и многие другие биополимеры (см. Высокомолекулярные соединения), а также ряд синтетических полимеров. В результате диссоциации макромолекул полиэлектролитов образуются низкомолекулярные ионы (противоионы), как правило, различной природы и многозарядный макромолекулярный ион. Часть противоионов прочно связана с макромолекулярный ионом электростатическими силами; остальные находятся в растворе в свободном состоянии.

Примерами коллоидных электролитов могут служить мыла, дубильные вещества и некоторые красители. Для растворов этих веществ характерно равновесие:
мицеллы (коллоидные частицы) → молекулы → ионы.

При разбавлении раствора равновесие смещается слева направо.

См. также Амфолиты.

error: